Answer

Verified

450k+ views

Hint: To find the sum of given infinite series, substitute the value of infinite sum as the variable x itself, i.e., rewrite \[x=\sqrt{6+\sqrt{6+\sqrt{+6...\infty }}}\] as \[x=\sqrt{6+x}\]. Square the equation on both sides and factorize the given equation to find roots of the equation and then check each of the given options.

Complete step-by-step answer:

We have to find the value of \[x=\sqrt{6+\sqrt{6+\sqrt{+6...\infty }}}\].

As this is an infinite sum, we can write the terms of the equation as the variable x itself. Thus, we have \[x=\sqrt{6+x}\].

We have to simplify the given equation. To do so, we will square the equation on both sides.

Thus, we have \[{{x}^{2}}=6+x\].

Rearranging the terms of the above equation, we have \[{{x}^{2}}-x-6=0\].

We can rewrite the above equation as \[{{x}^{2}}+2x-3x-6=0\].

Taking out the common terms, we have \[x\left( x+2 \right)-3\left( x+2 \right)=0\].

So, we have \[\left( x+2 \right)\left( x-3 \right)=0\].

Thus, the roots of the above equation are \[x=-2,3\].

Now, we will check each of the given options.

We can clearly see that x is not an irrational number. Hence, option (a) is incorrect.

Also, x does not lie between 2 and 3. Hence, option (b) is incorrect as well.

We have \[x=3\] as one of the solutions of the above equation. Thus, this is a correct option.

Hence, the solution of the equation \[x=\sqrt{6+\sqrt{6+\sqrt{+6...\infty }}}\] is \[x=3\], which is option (c).

Note: We observe that the given equation when simplified is a polynomial equation. Polynomial is an expression consisting of variables and coefficients that involves only the operations of addition, subtraction, multiplication or division, and non-negative integer exponents of variables. Degree of a polynomial is the value of the highest power of degrees of its individual term. We observe that the polynomial given to us is of degree 2. There are multiple ways to solve a polynomial equation, like completing the square and factoring the polynomial by splitting the intermediate terms. We have solved this question using the factorization method by splitting the intermediate terms.

Complete step-by-step answer:

We have to find the value of \[x=\sqrt{6+\sqrt{6+\sqrt{+6...\infty }}}\].

As this is an infinite sum, we can write the terms of the equation as the variable x itself. Thus, we have \[x=\sqrt{6+x}\].

We have to simplify the given equation. To do so, we will square the equation on both sides.

Thus, we have \[{{x}^{2}}=6+x\].

Rearranging the terms of the above equation, we have \[{{x}^{2}}-x-6=0\].

We can rewrite the above equation as \[{{x}^{2}}+2x-3x-6=0\].

Taking out the common terms, we have \[x\left( x+2 \right)-3\left( x+2 \right)=0\].

So, we have \[\left( x+2 \right)\left( x-3 \right)=0\].

Thus, the roots of the above equation are \[x=-2,3\].

Now, we will check each of the given options.

We can clearly see that x is not an irrational number. Hence, option (a) is incorrect.

Also, x does not lie between 2 and 3. Hence, option (b) is incorrect as well.

We have \[x=3\] as one of the solutions of the above equation. Thus, this is a correct option.

Hence, the solution of the equation \[x=\sqrt{6+\sqrt{6+\sqrt{+6...\infty }}}\] is \[x=3\], which is option (c).

Note: We observe that the given equation when simplified is a polynomial equation. Polynomial is an expression consisting of variables and coefficients that involves only the operations of addition, subtraction, multiplication or division, and non-negative integer exponents of variables. Degree of a polynomial is the value of the highest power of degrees of its individual term. We observe that the polynomial given to us is of degree 2. There are multiple ways to solve a polynomial equation, like completing the square and factoring the polynomial by splitting the intermediate terms. We have solved this question using the factorization method by splitting the intermediate terms.

Recently Updated Pages

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Let x1x2xn be in an AP of x1 + x4 + x9 + x11 + x20-class-11-maths-CBSE

Let x1x2x3 and x4 be four nonzero real numbers satisfying class 11 maths CBSE

Trending doubts

Change the following sentences into negative and interrogative class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Write an application to the principal requesting five class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write two differences between autotrophic and heterotrophic class 10 biology CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE