
If we have given \[ x=\tan t\text{ and }y=3\sec t\text{, then the value of }\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\text{ at }t=\dfrac{\pi }{4}\text{ is}\]
\[\begin{array}{*{35}{l}}
\text{A) }\dfrac{3}{2\sqrt{2}} \\
\text{B) }\dfrac{1}{3\sqrt{2}} \\
\text{C) }\dfrac{1}{6} \\
\text{D) }\dfrac{1}{6\sqrt{2}} \\
\end{array}\]
Answer
577.5k+ views
Hint: In this, we will find the value of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\text{ at }t=\dfrac{\pi }{4}\] when\[x=\tan t\text{ and }y=3\sec t\]. At first we will derivatives of x and y with respect to t and then find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] by using chain rule. Then compute the value at \[t=\dfrac{\pi }{4}\].
Complete step by step answer:
Given that\[x=\tan t\text{ and }y=3\sec t\].
Differentiating x with respect to t, we get
$\dfrac{dx}{dt}=\dfrac{d\left( \tan t \right)}{dt}$
Since, $\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x$
$\Rightarrow \dfrac{dx}{dt}={{\sec }^{2}}t.....(1)$
Differentiating y with respect to t, we get
$\dfrac{dy}{dt}=\dfrac{d\left( 3\sec t \right)}{dt}=\dfrac{3d\left( \sec t \right)}{dt}$
Since, $\dfrac{d\left( \sec x \right)}{dx}=\sec x\cdot \tan x$
$\Rightarrow \dfrac{dy}{dt}=3\sec t\cdot \tan t.....(2)$
Now,$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}},\text{ }\dfrac{dx}{dt}\ne 0.....(3)$
Since, \[t=\dfrac{\pi }{4}\text{, }\dfrac{dx}{dt}={{\sec }^{2}}\left( \dfrac{\pi }{4} \right)={{\left( \sqrt{2} \right)}^{2}}=2\]
Hence, equation (3) holds as $\dfrac{dx}{dt}\ne 0\text{ at }t=\dfrac{\pi }{4}.$
Using equation (1) and equation (2) in equation (3), we get
$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3\sec t\cdot \tan t}{{{\sec }^{2}}t}$
By cancelling sect from numerator and denominator, we get
$\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}$
Since,$\tan t=\dfrac{\sin t}{\cos t}\text{ and }\sec t=\dfrac{1}{\cos t}.$
$\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}=\dfrac{3\left( \dfrac{\sin t}{\cos t} \right)}{\dfrac{1}{\cos t}}.$
By cancelling $\dfrac{1}{\cos t}$ from numerator and denominator, we get
$\dfrac{dy}{dx}=3\sin t.....(4)$
By chain rule and using equation (4),
$\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\cdot \dfrac{dt}{dx}=\dfrac{d\left( 3\sin t \right)}{dt}\cdot \dfrac{1}{\dfrac{dx}{dt}}$
By equation (1), we get
\[\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3d\left( \sin t \right)}{dt}\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)\]
Since, \[\dfrac{d\left( \sin x \right)}{dx}=\cos x\]
\[\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)\]
$\dfrac{1}{\sec t}=\cos t\Rightarrow \dfrac{1}{{{\sec }^{2}}t}={{\cos }^{2}}t$
\[\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( {{\cos }^{2}}t \right)=3{{\cos }^{3}}t\]
At \[t=\dfrac{\pi }{4}\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3{{\left( \cos \left( \dfrac{\pi }{4} \right) \right)}^{3}}=3{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=\dfrac{3}{2\sqrt{2}}\]
\[\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3}{2\sqrt{2}}\].
So, the correct answer is “Option A”.
Note: In this problem one should know all formulas of derivative and what is chain rule?. Keep in mind that we did not calculate the double derivative of x and y with respect to t and then find the double derivative of y with respect to x using double derivatives of x and y.
Complete step by step answer:
Given that\[x=\tan t\text{ and }y=3\sec t\].
Differentiating x with respect to t, we get
$\dfrac{dx}{dt}=\dfrac{d\left( \tan t \right)}{dt}$
Since, $\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x$
$\Rightarrow \dfrac{dx}{dt}={{\sec }^{2}}t.....(1)$
Differentiating y with respect to t, we get
$\dfrac{dy}{dt}=\dfrac{d\left( 3\sec t \right)}{dt}=\dfrac{3d\left( \sec t \right)}{dt}$
Since, $\dfrac{d\left( \sec x \right)}{dx}=\sec x\cdot \tan x$
$\Rightarrow \dfrac{dy}{dt}=3\sec t\cdot \tan t.....(2)$
Now,$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}},\text{ }\dfrac{dx}{dt}\ne 0.....(3)$
Since, \[t=\dfrac{\pi }{4}\text{, }\dfrac{dx}{dt}={{\sec }^{2}}\left( \dfrac{\pi }{4} \right)={{\left( \sqrt{2} \right)}^{2}}=2\]
Hence, equation (3) holds as $\dfrac{dx}{dt}\ne 0\text{ at }t=\dfrac{\pi }{4}.$
Using equation (1) and equation (2) in equation (3), we get
$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3\sec t\cdot \tan t}{{{\sec }^{2}}t}$
By cancelling sect from numerator and denominator, we get
$\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}$
Since,$\tan t=\dfrac{\sin t}{\cos t}\text{ and }\sec t=\dfrac{1}{\cos t}.$
$\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}=\dfrac{3\left( \dfrac{\sin t}{\cos t} \right)}{\dfrac{1}{\cos t}}.$
By cancelling $\dfrac{1}{\cos t}$ from numerator and denominator, we get
$\dfrac{dy}{dx}=3\sin t.....(4)$
By chain rule and using equation (4),
$\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\cdot \dfrac{dt}{dx}=\dfrac{d\left( 3\sin t \right)}{dt}\cdot \dfrac{1}{\dfrac{dx}{dt}}$
By equation (1), we get
\[\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3d\left( \sin t \right)}{dt}\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)\]
Since, \[\dfrac{d\left( \sin x \right)}{dx}=\cos x\]
\[\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)\]
$\dfrac{1}{\sec t}=\cos t\Rightarrow \dfrac{1}{{{\sec }^{2}}t}={{\cos }^{2}}t$
\[\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( {{\cos }^{2}}t \right)=3{{\cos }^{3}}t\]
At \[t=\dfrac{\pi }{4}\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3{{\left( \cos \left( \dfrac{\pi }{4} \right) \right)}^{3}}=3{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=\dfrac{3}{2\sqrt{2}}\]
\[\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3}{2\sqrt{2}}\].
So, the correct answer is “Option A”.
Note: In this problem one should know all formulas of derivative and what is chain rule?. Keep in mind that we did not calculate the double derivative of x and y with respect to t and then find the double derivative of y with respect to x using double derivatives of x and y.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

