
If we have given \[ x=\tan t\text{ and }y=3\sec t\text{, then the value of }\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\text{ at }t=\dfrac{\pi }{4}\text{ is}\]
\[\begin{array}{*{35}{l}}
\text{A) }\dfrac{3}{2\sqrt{2}} \\
\text{B) }\dfrac{1}{3\sqrt{2}} \\
\text{C) }\dfrac{1}{6} \\
\text{D) }\dfrac{1}{6\sqrt{2}} \\
\end{array}\]
Answer
591.3k+ views
Hint: In this, we will find the value of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\text{ at }t=\dfrac{\pi }{4}\] when\[x=\tan t\text{ and }y=3\sec t\]. At first we will derivatives of x and y with respect to t and then find \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\] by using chain rule. Then compute the value at \[t=\dfrac{\pi }{4}\].
Complete step by step answer:
Given that\[x=\tan t\text{ and }y=3\sec t\].
Differentiating x with respect to t, we get
$\dfrac{dx}{dt}=\dfrac{d\left( \tan t \right)}{dt}$
Since, $\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x$
$\Rightarrow \dfrac{dx}{dt}={{\sec }^{2}}t.....(1)$
Differentiating y with respect to t, we get
$\dfrac{dy}{dt}=\dfrac{d\left( 3\sec t \right)}{dt}=\dfrac{3d\left( \sec t \right)}{dt}$
Since, $\dfrac{d\left( \sec x \right)}{dx}=\sec x\cdot \tan x$
$\Rightarrow \dfrac{dy}{dt}=3\sec t\cdot \tan t.....(2)$
Now,$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}},\text{ }\dfrac{dx}{dt}\ne 0.....(3)$
Since, \[t=\dfrac{\pi }{4}\text{, }\dfrac{dx}{dt}={{\sec }^{2}}\left( \dfrac{\pi }{4} \right)={{\left( \sqrt{2} \right)}^{2}}=2\]
Hence, equation (3) holds as $\dfrac{dx}{dt}\ne 0\text{ at }t=\dfrac{\pi }{4}.$
Using equation (1) and equation (2) in equation (3), we get
$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3\sec t\cdot \tan t}{{{\sec }^{2}}t}$
By cancelling sect from numerator and denominator, we get
$\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}$
Since,$\tan t=\dfrac{\sin t}{\cos t}\text{ and }\sec t=\dfrac{1}{\cos t}.$
$\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}=\dfrac{3\left( \dfrac{\sin t}{\cos t} \right)}{\dfrac{1}{\cos t}}.$
By cancelling $\dfrac{1}{\cos t}$ from numerator and denominator, we get
$\dfrac{dy}{dx}=3\sin t.....(4)$
By chain rule and using equation (4),
$\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\cdot \dfrac{dt}{dx}=\dfrac{d\left( 3\sin t \right)}{dt}\cdot \dfrac{1}{\dfrac{dx}{dt}}$
By equation (1), we get
\[\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3d\left( \sin t \right)}{dt}\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)\]
Since, \[\dfrac{d\left( \sin x \right)}{dx}=\cos x\]
\[\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)\]
$\dfrac{1}{\sec t}=\cos t\Rightarrow \dfrac{1}{{{\sec }^{2}}t}={{\cos }^{2}}t$
\[\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( {{\cos }^{2}}t \right)=3{{\cos }^{3}}t\]
At \[t=\dfrac{\pi }{4}\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3{{\left( \cos \left( \dfrac{\pi }{4} \right) \right)}^{3}}=3{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=\dfrac{3}{2\sqrt{2}}\]
\[\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3}{2\sqrt{2}}\].
So, the correct answer is “Option A”.
Note: In this problem one should know all formulas of derivative and what is chain rule?. Keep in mind that we did not calculate the double derivative of x and y with respect to t and then find the double derivative of y with respect to x using double derivatives of x and y.
Complete step by step answer:
Given that\[x=\tan t\text{ and }y=3\sec t\].
Differentiating x with respect to t, we get
$\dfrac{dx}{dt}=\dfrac{d\left( \tan t \right)}{dt}$
Since, $\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x$
$\Rightarrow \dfrac{dx}{dt}={{\sec }^{2}}t.....(1)$
Differentiating y with respect to t, we get
$\dfrac{dy}{dt}=\dfrac{d\left( 3\sec t \right)}{dt}=\dfrac{3d\left( \sec t \right)}{dt}$
Since, $\dfrac{d\left( \sec x \right)}{dx}=\sec x\cdot \tan x$
$\Rightarrow \dfrac{dy}{dt}=3\sec t\cdot \tan t.....(2)$
Now,$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}},\text{ }\dfrac{dx}{dt}\ne 0.....(3)$
Since, \[t=\dfrac{\pi }{4}\text{, }\dfrac{dx}{dt}={{\sec }^{2}}\left( \dfrac{\pi }{4} \right)={{\left( \sqrt{2} \right)}^{2}}=2\]
Hence, equation (3) holds as $\dfrac{dx}{dt}\ne 0\text{ at }t=\dfrac{\pi }{4}.$
Using equation (1) and equation (2) in equation (3), we get
$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3\sec t\cdot \tan t}{{{\sec }^{2}}t}$
By cancelling sect from numerator and denominator, we get
$\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}$
Since,$\tan t=\dfrac{\sin t}{\cos t}\text{ and }\sec t=\dfrac{1}{\cos t}.$
$\dfrac{dy}{dx}=\dfrac{3\tan t}{\sec t}=\dfrac{3\left( \dfrac{\sin t}{\cos t} \right)}{\dfrac{1}{\cos t}}.$
By cancelling $\dfrac{1}{\cos t}$ from numerator and denominator, we get
$\dfrac{dy}{dx}=3\sin t.....(4)$
By chain rule and using equation (4),
$\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{d}{dt}\left( \dfrac{dy}{dx} \right)\cdot \dfrac{dt}{dx}=\dfrac{d\left( 3\sin t \right)}{dt}\cdot \dfrac{1}{\dfrac{dx}{dt}}$
By equation (1), we get
\[\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3d\left( \sin t \right)}{dt}\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)\]
Since, \[\dfrac{d\left( \sin x \right)}{dx}=\cos x\]
\[\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( \dfrac{1}{{{\sec }^{2}}t} \right)\]
$\dfrac{1}{\sec t}=\cos t\Rightarrow \dfrac{1}{{{\sec }^{2}}t}={{\cos }^{2}}t$
\[\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3\cos t\cdot \left( {{\cos }^{2}}t \right)=3{{\cos }^{3}}t\]
At \[t=\dfrac{\pi }{4}\Rightarrow \dfrac{d{{y}^{2}}}{{{d}^{2}}x}=3{{\left( \cos \left( \dfrac{\pi }{4} \right) \right)}^{3}}=3{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=\dfrac{3}{2\sqrt{2}}\]
\[\dfrac{d{{y}^{2}}}{{{d}^{2}}x}=\dfrac{3}{2\sqrt{2}}\].
So, the correct answer is “Option A”.
Note: In this problem one should know all formulas of derivative and what is chain rule?. Keep in mind that we did not calculate the double derivative of x and y with respect to t and then find the double derivative of y with respect to x using double derivatives of x and y.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

