
If we have an expression as ${{x}^{a}}={{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}={{z}^{c}}$, then prove that $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in A.P
Answer
484.2k+ views
Hint: In this problem, we are given three equalities with three terms. We will consider 2 terms at a first and since we need to deal with the powers, apply ln (${{\log }_{e}}$) on both sides. Then we will try to find the relation between the powers. Then we will take the next equality and repeat the same operation and try to find the relation between the powers. Then we will try to prove that $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$are in arithmetic progression (AP).
Complete step-by-step solution:
Thus, to prove that $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ to be in AP, we must prove the following relation.
$\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}$
Now, it is given to us that ${{x}^{a}}={{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}={{z}^{c}}$.
We must first consider the first equality, i.e. ${{x}^{a}}={{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}$.
We will apply ln on both sides.
\[\Rightarrow \ln {{x}^{a}}=\ln {{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}\]
But we know that ln(ab) = ln(a) + ln(b).
\[\begin{align}
& \Rightarrow \ln {{x}^{a}}=\ln {{x}^{\dfrac{b}{2}}}+\ln {{z}^{\dfrac{b}{2}}} \\
& \Rightarrow a\ln x=\dfrac{b}{2}\ln x+\dfrac{b}{2}\ln z \\
& \Rightarrow \dfrac{\left( a-\dfrac{b}{2} \right)}{\dfrac{b}{2}}\ln x=\ln z \\
& \Rightarrow \dfrac{a-\dfrac{b}{2}}{\dfrac{b}{2}}=\dfrac{\ln z}{\ln x} \\
\end{align}\]
But we know that $\dfrac{\ln a}{\ln b}={{\log }_{b}}a$.
$\Rightarrow \dfrac{a-\dfrac{b}{2}}{\dfrac{b}{2}}={{\log }_{x}}z......\left( 1 \right)$
We shall now consider the first equality, i.e. ${{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}={{z}^{c}}$.
We will apply ln on both sides and follow the same steps we followed in the first equality.
\[\begin{align}
& \Rightarrow \ln {{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}=\ln {{z}^{c}} \\
& \Rightarrow \ln {{z}^{c}}=\ln {{x}^{\dfrac{b}{2}}}+\ln {{z}^{\dfrac{b}{2}}} \\
& \Rightarrow c\ln z=\dfrac{b}{2}\ln x+\dfrac{b}{2}\ln z \\
& \Rightarrow \left( c-\dfrac{b}{2} \right)\ln z=\dfrac{b}{2}\ln x \\
& \Rightarrow \dfrac{c-\dfrac{b}{2}}{\dfrac{b}{2}}=\dfrac{\ln x}{\ln z} \\
& \Rightarrow \dfrac{c-\dfrac{b}{2}}{\dfrac{b}{2}}={{\log }_{z}}x \\
\end{align}\]
Now, if $\dfrac{\ln a}{\ln b}={{\log }_{b}}a$ then $\dfrac{\ln b}{\ln a}={{\log }_{a}}b$ and thus ${{\log }_{b}}a=\dfrac{1}{{{\log }_{a}}b}$.
$\begin{align}
& \Rightarrow \dfrac{c-\dfrac{b}{2}}{\dfrac{b}{2}}=\dfrac{1}{{{\log }_{x}}z} \\
& \Rightarrow \dfrac{\dfrac{b}{2}}{c-\dfrac{b}{2}}={{\log }_{z}}x......\left( 2 \right) \\
\end{align}$
Therefore, we can see that the right hand side of (1) and (2) are equal. Thus, left hand side must also be equal.
\[\Rightarrow \dfrac{a-\dfrac{b}{2}}{\dfrac{b}{2}}=\dfrac{\dfrac{b}{2}}{c-\dfrac{b}{2}}\]
Now, we shall simplify the above equation and try to reduce it to $\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}$.
\[\begin{align}
& \Rightarrow \left( a-\dfrac{b}{2} \right)\left( c-\dfrac{b}{2} \right)={{\left( \dfrac{b}{2} \right)}^{2}} \\
& \Rightarrow ac-\dfrac{ab}{2}-\dfrac{bc}{2}+{{\left( \dfrac{b}{2} \right)}^{2}}={{\left( \dfrac{b}{2} \right)}^{2}} \\
\end{align}\]
\[{{\left( \dfrac{b}{2} \right)}^{2}}\]cancels out from both sides.
\[\begin{align}
& \Rightarrow ac-\dfrac{ab}{2}-\dfrac{bc}{2}=0 \\
& \Rightarrow ac=\dfrac{ab}{2}+\dfrac{bc}{2} \\
& \Rightarrow 1=\dfrac{b}{2}\left( \dfrac{1}{c}+\dfrac{1}{a} \right) \\
& \Rightarrow \dfrac{2}{b}=\dfrac{1}{c}+\dfrac{1}{a}......\left( 3 \right) \\
\end{align}\]
Thus, from (3), we can say that $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in A.P.
Note: For three terms to be in arithmetic progression, twice the middle term must be equal to the sum of the other two terms. Students must know about the operations of logarithm whenever it comes to dealing with the powers.
.
Complete step-by-step solution:
Thus, to prove that $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ to be in AP, we must prove the following relation.
$\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}$
Now, it is given to us that ${{x}^{a}}={{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}={{z}^{c}}$.
We must first consider the first equality, i.e. ${{x}^{a}}={{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}$.
We will apply ln on both sides.
\[\Rightarrow \ln {{x}^{a}}=\ln {{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}\]
But we know that ln(ab) = ln(a) + ln(b).
\[\begin{align}
& \Rightarrow \ln {{x}^{a}}=\ln {{x}^{\dfrac{b}{2}}}+\ln {{z}^{\dfrac{b}{2}}} \\
& \Rightarrow a\ln x=\dfrac{b}{2}\ln x+\dfrac{b}{2}\ln z \\
& \Rightarrow \dfrac{\left( a-\dfrac{b}{2} \right)}{\dfrac{b}{2}}\ln x=\ln z \\
& \Rightarrow \dfrac{a-\dfrac{b}{2}}{\dfrac{b}{2}}=\dfrac{\ln z}{\ln x} \\
\end{align}\]
But we know that $\dfrac{\ln a}{\ln b}={{\log }_{b}}a$.
$\Rightarrow \dfrac{a-\dfrac{b}{2}}{\dfrac{b}{2}}={{\log }_{x}}z......\left( 1 \right)$
We shall now consider the first equality, i.e. ${{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}={{z}^{c}}$.
We will apply ln on both sides and follow the same steps we followed in the first equality.
\[\begin{align}
& \Rightarrow \ln {{x}^{\dfrac{b}{2}}}{{z}^{\dfrac{b}{2}}}=\ln {{z}^{c}} \\
& \Rightarrow \ln {{z}^{c}}=\ln {{x}^{\dfrac{b}{2}}}+\ln {{z}^{\dfrac{b}{2}}} \\
& \Rightarrow c\ln z=\dfrac{b}{2}\ln x+\dfrac{b}{2}\ln z \\
& \Rightarrow \left( c-\dfrac{b}{2} \right)\ln z=\dfrac{b}{2}\ln x \\
& \Rightarrow \dfrac{c-\dfrac{b}{2}}{\dfrac{b}{2}}=\dfrac{\ln x}{\ln z} \\
& \Rightarrow \dfrac{c-\dfrac{b}{2}}{\dfrac{b}{2}}={{\log }_{z}}x \\
\end{align}\]
Now, if $\dfrac{\ln a}{\ln b}={{\log }_{b}}a$ then $\dfrac{\ln b}{\ln a}={{\log }_{a}}b$ and thus ${{\log }_{b}}a=\dfrac{1}{{{\log }_{a}}b}$.
$\begin{align}
& \Rightarrow \dfrac{c-\dfrac{b}{2}}{\dfrac{b}{2}}=\dfrac{1}{{{\log }_{x}}z} \\
& \Rightarrow \dfrac{\dfrac{b}{2}}{c-\dfrac{b}{2}}={{\log }_{z}}x......\left( 2 \right) \\
\end{align}$
Therefore, we can see that the right hand side of (1) and (2) are equal. Thus, left hand side must also be equal.
\[\Rightarrow \dfrac{a-\dfrac{b}{2}}{\dfrac{b}{2}}=\dfrac{\dfrac{b}{2}}{c-\dfrac{b}{2}}\]
Now, we shall simplify the above equation and try to reduce it to $\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}$.
\[\begin{align}
& \Rightarrow \left( a-\dfrac{b}{2} \right)\left( c-\dfrac{b}{2} \right)={{\left( \dfrac{b}{2} \right)}^{2}} \\
& \Rightarrow ac-\dfrac{ab}{2}-\dfrac{bc}{2}+{{\left( \dfrac{b}{2} \right)}^{2}}={{\left( \dfrac{b}{2} \right)}^{2}} \\
\end{align}\]
\[{{\left( \dfrac{b}{2} \right)}^{2}}\]cancels out from both sides.
\[\begin{align}
& \Rightarrow ac-\dfrac{ab}{2}-\dfrac{bc}{2}=0 \\
& \Rightarrow ac=\dfrac{ab}{2}+\dfrac{bc}{2} \\
& \Rightarrow 1=\dfrac{b}{2}\left( \dfrac{1}{c}+\dfrac{1}{a} \right) \\
& \Rightarrow \dfrac{2}{b}=\dfrac{1}{c}+\dfrac{1}{a}......\left( 3 \right) \\
\end{align}\]
Thus, from (3), we can say that $\dfrac{1}{a}$, $\dfrac{1}{b}$, $\dfrac{1}{c}$ are in A.P.
Note: For three terms to be in arithmetic progression, twice the middle term must be equal to the sum of the other two terms. Students must know about the operations of logarithm whenever it comes to dealing with the powers.
.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
