Answer
Verified
390.6k+ views
Hint: Here, in the given question, three different terms are given equal to each other and on the basis of that, we are asked to prove some given equations to be true. First of all, we will take some other constant variable (let’s say \[p\]) equating the three terms given and then find the value of each variable individually. After that we will start with the left hand side of the equation and reach the right hand side of the equation by simplifying it using applicable identities.
Complete step-by-step solution:
Given that \[\dfrac{{\log x}}{{b - c}} = \dfrac{{\log y}}{{c - a}} = \dfrac{{\log z}}{{a - b}}\]
Let \[\dfrac{{\log x}}{{b - c}} = \dfrac{{\log y}}{{c - a}} = \dfrac{{\log z}}{{a - b}} = p\]
\[ \Rightarrow \log x = p\left( {b - c} \right)\]
Assuming that the \[\log \]function has base of \[10\], take exponential function both sides,
\[\therefore x = {10^{p\left( {b - c} \right)}}\]
Similarly,
\[ \log y = p\left( {c - a} \right) \\
\Rightarrow y = {10^{p\left( {c - a} \right)}} \],
and
\[\log z = p\left( {a - b} \right) \\
\Rightarrow z = {10^{p\left( {a - b} \right)}} \]
i). To prove: \[xyz = 1\]
We will continue with the left hand side of the equation.
Proof: L.H.S = \[xyz\]
\[ = {10^{p\left( {b - c} \right)}} \times {10^{p\left( {c - a} \right)}} \times {10^{p\left( {a - b} \right)}}\]
Following the multiplication rule which says \[{m^x} \times {m^y} = {m^{x + y}}\], we get,
L.H.S=\[{10^{p\left( {b - c} \right) + p\left( {c - a} \right) + p\left( {a - b} \right)}}\]
Simplifying it, we get,
L.H.S=\[{10^{pb - pc + pc - pa + pa - pb}}\]
=\[{10^0}\]
= \[1\], which is equal to the right hand side of the equation.
Hence, L.H.S = R.H.S
ii). To prove: \[{x^a}{y^b}{z^c} = 1\]
We will continue with the Left hand Side of the equation.
Proof: L.H.S =\[{x^a}{y^b}{z^c}\]
\[ = {\left( {{{10}^{p\left( {b - c} \right)}}} \right)^a} \times {\left( {{{10}^{p\left( {c - a} \right)}}} \right)^b} \times {\left( {{{10}^{p\left( {a - b} \right)}}} \right)^c}\]
Applying the rule that says, \[{\left( {{m^x}} \right)^y} = {m^{xy}}\], we get,
L.H.S = \[{10^{ap\left( {b - c} \right)}} \times {10^{bp\left( {c - a} \right)}} \times {10^{cp\left( {a - b} \right)}}\]
Simplifying it, we get,
L.H.S = \[{10^{abp - apc}} \times {10^{bpc - abp}} \times {10^{acp - bcp}}\]
Following the multiplication rule which says \[{m^x} \times {m^y} = {m^{x + y}}\], we get,
L.H.S = \[{10^{abp - apc + bpc - abp + acp - bcp}}\]
\[ = {10^0}\]
\[ = 1\], which is equal to the right hand side of the equation.
Hence, L.H.S = R.H.S
iii). To prove: \[{x^{b + c}}{y^{c + a}}{z^{a + b}} = 1\]
We will continue with the Left hand Side of the equation.
Proof: L.H.S = \[{x^{b + c}}{y^{c + a}}{z^{a + b}} = 1\]
\[ = {\left( {{{10}^{p\left( {b - c} \right)}}} \right)^{b + c}} \times {\left( {{{10}^{p\left( {c - a} \right)}}} \right)^{c + a}} \times {\left( {{{10}^{p\left( {a - b} \right)}}} \right)^{a + b}}\]
Applying the rule that says, \[{\left( {{m^x}} \right)^y} = {m^{xy}}\], we get,
L.H.S = \[{10^{p\left( {b + c} \right)\left( {b - c} \right)}} \times {10^{p\left( {c + a} \right)\left( {c - a} \right)}} \times {10^{p\left( {a + b} \right)\left( {a - b} \right)}}\]
Simplifying it using the identity \[\left( {x + y} \right)\left( {x - y} \right) = {x^2} - {y^2}\], we get,
L.H.S = \[{10^{p\left( {{b^2} - {c^2}} \right)}} \times {10^{p\left( {{c^2} - {a^2}} \right)}} \times {10^{p\left( {{a^2} - {b^2}} \right)}}\]
Following the multiplication rule which says \[{m^x} \times {m^y} = {m^{x + y}}\], we get,
L.H.S = \[{10^{p\left( {{b^2} - {c^2} + {c^2} - {a^2} + {a^2} - {b^2}} \right)}}\]
\[ = {10^0}\]
\[ = 1\], which is equal to the right hand side of the equation.
Hence, L.H.S = R.H.S
Note: Generally, if the base of \[\log \] function is not given, we assume it as \[10\], or we can say that the base is \[10\] itself if it’s not mentioned. If natural log function is given then the base will be \[e\]. Although, in the given question, it will make no difference what base is there, given any base, the solution will be similar. It is important that we must remember the exponential rules and identities to solve such types of questions.
Complete step-by-step solution:
Given that \[\dfrac{{\log x}}{{b - c}} = \dfrac{{\log y}}{{c - a}} = \dfrac{{\log z}}{{a - b}}\]
Let \[\dfrac{{\log x}}{{b - c}} = \dfrac{{\log y}}{{c - a}} = \dfrac{{\log z}}{{a - b}} = p\]
\[ \Rightarrow \log x = p\left( {b - c} \right)\]
Assuming that the \[\log \]function has base of \[10\], take exponential function both sides,
\[\therefore x = {10^{p\left( {b - c} \right)}}\]
Similarly,
\[ \log y = p\left( {c - a} \right) \\
\Rightarrow y = {10^{p\left( {c - a} \right)}} \],
and
\[\log z = p\left( {a - b} \right) \\
\Rightarrow z = {10^{p\left( {a - b} \right)}} \]
i). To prove: \[xyz = 1\]
We will continue with the left hand side of the equation.
Proof: L.H.S = \[xyz\]
\[ = {10^{p\left( {b - c} \right)}} \times {10^{p\left( {c - a} \right)}} \times {10^{p\left( {a - b} \right)}}\]
Following the multiplication rule which says \[{m^x} \times {m^y} = {m^{x + y}}\], we get,
L.H.S=\[{10^{p\left( {b - c} \right) + p\left( {c - a} \right) + p\left( {a - b} \right)}}\]
Simplifying it, we get,
L.H.S=\[{10^{pb - pc + pc - pa + pa - pb}}\]
=\[{10^0}\]
= \[1\], which is equal to the right hand side of the equation.
Hence, L.H.S = R.H.S
ii). To prove: \[{x^a}{y^b}{z^c} = 1\]
We will continue with the Left hand Side of the equation.
Proof: L.H.S =\[{x^a}{y^b}{z^c}\]
\[ = {\left( {{{10}^{p\left( {b - c} \right)}}} \right)^a} \times {\left( {{{10}^{p\left( {c - a} \right)}}} \right)^b} \times {\left( {{{10}^{p\left( {a - b} \right)}}} \right)^c}\]
Applying the rule that says, \[{\left( {{m^x}} \right)^y} = {m^{xy}}\], we get,
L.H.S = \[{10^{ap\left( {b - c} \right)}} \times {10^{bp\left( {c - a} \right)}} \times {10^{cp\left( {a - b} \right)}}\]
Simplifying it, we get,
L.H.S = \[{10^{abp - apc}} \times {10^{bpc - abp}} \times {10^{acp - bcp}}\]
Following the multiplication rule which says \[{m^x} \times {m^y} = {m^{x + y}}\], we get,
L.H.S = \[{10^{abp - apc + bpc - abp + acp - bcp}}\]
\[ = {10^0}\]
\[ = 1\], which is equal to the right hand side of the equation.
Hence, L.H.S = R.H.S
iii). To prove: \[{x^{b + c}}{y^{c + a}}{z^{a + b}} = 1\]
We will continue with the Left hand Side of the equation.
Proof: L.H.S = \[{x^{b + c}}{y^{c + a}}{z^{a + b}} = 1\]
\[ = {\left( {{{10}^{p\left( {b - c} \right)}}} \right)^{b + c}} \times {\left( {{{10}^{p\left( {c - a} \right)}}} \right)^{c + a}} \times {\left( {{{10}^{p\left( {a - b} \right)}}} \right)^{a + b}}\]
Applying the rule that says, \[{\left( {{m^x}} \right)^y} = {m^{xy}}\], we get,
L.H.S = \[{10^{p\left( {b + c} \right)\left( {b - c} \right)}} \times {10^{p\left( {c + a} \right)\left( {c - a} \right)}} \times {10^{p\left( {a + b} \right)\left( {a - b} \right)}}\]
Simplifying it using the identity \[\left( {x + y} \right)\left( {x - y} \right) = {x^2} - {y^2}\], we get,
L.H.S = \[{10^{p\left( {{b^2} - {c^2}} \right)}} \times {10^{p\left( {{c^2} - {a^2}} \right)}} \times {10^{p\left( {{a^2} - {b^2}} \right)}}\]
Following the multiplication rule which says \[{m^x} \times {m^y} = {m^{x + y}}\], we get,
L.H.S = \[{10^{p\left( {{b^2} - {c^2} + {c^2} - {a^2} + {a^2} - {b^2}} \right)}}\]
\[ = {10^0}\]
\[ = 1\], which is equal to the right hand side of the equation.
Hence, L.H.S = R.H.S
Note: Generally, if the base of \[\log \] function is not given, we assume it as \[10\], or we can say that the base is \[10\] itself if it’s not mentioned. If natural log function is given then the base will be \[e\]. Although, in the given question, it will make no difference what base is there, given any base, the solution will be similar. It is important that we must remember the exponential rules and identities to solve such types of questions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE