
If we have a trigonometric expression as $\sin \theta =\operatorname{Sin}\alpha $ , then:
A. $\dfrac{\theta +\alpha }{2}$ is any odd multiple of $\dfrac{\pi }{2}$ and $\dfrac{\theta -\alpha }{2}$ is any multiple of $\pi $ .
B. $\dfrac{\theta +\alpha }{2}$is any even multiple of $\dfrac{\pi }{2}$ and $\dfrac{\theta -\alpha }{2}$ is any odd multiple of $\pi $ .
C. $\dfrac{\theta +\alpha }{2}$is any multiple of $\dfrac{\pi }{2}$ and $\dfrac{\theta -\alpha }{2}$ is any odd multiple of $\pi $ .
D. $\dfrac{\theta +\alpha }{2}$is any multiple of $\dfrac{\pi }{2}$ and $\dfrac{\theta -\alpha }{2}$ is any even multiple of $\pi $ .
Answer
513.9k+ views
Hint: Take $\sin \alpha $ to LHS and then apply the formula “$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$“. In the obtained equation to get $2\sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$. Now solve this equation to get values of $\dfrac{\theta -\alpha }{2}$ and $\dfrac{\theta +\alpha }{2}$ .
Complete step-by-step solution:
Given $\sin \theta =\operatorname{Sin}\alpha $
Taking all the terms to LHS, we will get,
$\sin \theta -\sin \alpha =0$ ………………………. (1)
We know that: $\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$.
Using this formula in equation (1), we will get,
$2\sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Dividing both sides of the equation by 2, we will get,
$\Rightarrow \sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$
Either $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ or $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Let us first solve $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ .
We know that $\sin \left( 0 \right)=0$ .
So, $\sin \left( \dfrac{\theta -\alpha }{2} \right)=\sin \left( 0 \right)$ .
We know that the general solution of $\sin y=\sin x$ is $x=n\pi +{{\left( -1 \right)}^{n}}y$ .
On putting $x=\dfrac{\left( \theta -\alpha \right)}{2}$ and $y=0$ we will get –
$\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi -0$
So, $ \dfrac{\theta -\alpha }{2}= n\pi $
Now let us solve $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
We know that \[\cos \left( \dfrac{\pi }{2} \right)=0\] .
So, $\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ .
We know that the general solution of $\cos y=\cos x$ is $y=x+2n\pi $ .
Where ‘n’ is an integer.
So, general solution of $\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ is
\[\begin{align}
& \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\
& \Rightarrow \dfrac{\theta -\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\
\end{align}\]
Taking $\left( \dfrac{\pi }{2} \right)$ in RHS, we will get,
$\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 1+4n \right)$
So, for equation (1) to hold,
Two possible cases,
Case: 1 $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ .
From above solution, we have got,
$\sin \left( \dfrac{\theta -\alpha }{2} \right)=0\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi $ .
i.e. $\dfrac{\theta -\alpha }{2}$ is a multiple of $\pi $ .
Case: 2 $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Form above solution, we have got that,
$\cos \left( \dfrac{\theta +\alpha }{2} \right)=0\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 4n+1 \right)$ .
i.e. $\dfrac{\theta +\alpha }{2}$ is an odd multiple of $\dfrac{\pi }{2}$ .
Hence option (A) is the correct answer.
Note: In the solution, we have used the general solution of $\sin y=\sin x$ is $x=n\pi +{{\left( -1 \right)}^{n}}y$
We can prove this as follows:
$\sin x=\sin y$
So, $x=2k\pi +y$ or $x=2k\pi +\pi -y$
$\Rightarrow x=2k\pi +y$ or $x=\left( 2k+1 \right)\pi -y$
$\Rightarrow x=2k\pi +\left( -1 \right)2ky$ or $x=\left( 2k+1 \right)\pi +\left( -1 \right)2k+1y$
$\Rightarrow x=n\pi +\left( -1 \right)ny$
Where, n is any integer i.e. $n=0,\pm 1,\pm 2,\pm 3............$
Complete step-by-step solution:
Given $\sin \theta =\operatorname{Sin}\alpha $
Taking all the terms to LHS, we will get,
$\sin \theta -\sin \alpha =0$ ………………………. (1)
We know that: $\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$.
Using this formula in equation (1), we will get,
$2\sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Dividing both sides of the equation by 2, we will get,
$\Rightarrow \sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$
Either $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ or $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Let us first solve $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ .
We know that $\sin \left( 0 \right)=0$ .
So, $\sin \left( \dfrac{\theta -\alpha }{2} \right)=\sin \left( 0 \right)$ .
We know that the general solution of $\sin y=\sin x$ is $x=n\pi +{{\left( -1 \right)}^{n}}y$ .
On putting $x=\dfrac{\left( \theta -\alpha \right)}{2}$ and $y=0$ we will get –
$\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi -0$
So, $ \dfrac{\theta -\alpha }{2}= n\pi $
Now let us solve $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
We know that \[\cos \left( \dfrac{\pi }{2} \right)=0\] .
So, $\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ .
We know that the general solution of $\cos y=\cos x$ is $y=x+2n\pi $ .
Where ‘n’ is an integer.
So, general solution of $\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ is
\[\begin{align}
& \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\
& \Rightarrow \dfrac{\theta -\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\
\end{align}\]
Taking $\left( \dfrac{\pi }{2} \right)$ in RHS, we will get,
$\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 1+4n \right)$
So, for equation (1) to hold,
Two possible cases,
Case: 1 $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ .
From above solution, we have got,
$\sin \left( \dfrac{\theta -\alpha }{2} \right)=0\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi $ .
i.e. $\dfrac{\theta -\alpha }{2}$ is a multiple of $\pi $ .
Case: 2 $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Form above solution, we have got that,
$\cos \left( \dfrac{\theta +\alpha }{2} \right)=0\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 4n+1 \right)$ .
i.e. $\dfrac{\theta +\alpha }{2}$ is an odd multiple of $\dfrac{\pi }{2}$ .
Hence option (A) is the correct answer.
Note: In the solution, we have used the general solution of $\sin y=\sin x$ is $x=n\pi +{{\left( -1 \right)}^{n}}y$
We can prove this as follows:
$\sin x=\sin y$
So, $x=2k\pi +y$ or $x=2k\pi +\pi -y$
$\Rightarrow x=2k\pi +y$ or $x=\left( 2k+1 \right)\pi -y$
$\Rightarrow x=2k\pi +\left( -1 \right)2ky$ or $x=\left( 2k+1 \right)\pi +\left( -1 \right)2k+1y$
$\Rightarrow x=n\pi +\left( -1 \right)ny$
Where, n is any integer i.e. $n=0,\pm 1,\pm 2,\pm 3............$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
