
If we have a trigonometric expression as $\sin \theta =\operatorname{Sin}\alpha $ , then:
A. $\dfrac{\theta +\alpha }{2}$ is any odd multiple of $\dfrac{\pi }{2}$ and $\dfrac{\theta -\alpha }{2}$ is any multiple of $\pi $ .
B. $\dfrac{\theta +\alpha }{2}$is any even multiple of $\dfrac{\pi }{2}$ and $\dfrac{\theta -\alpha }{2}$ is any odd multiple of $\pi $ .
C. $\dfrac{\theta +\alpha }{2}$is any multiple of $\dfrac{\pi }{2}$ and $\dfrac{\theta -\alpha }{2}$ is any odd multiple of $\pi $ .
D. $\dfrac{\theta +\alpha }{2}$is any multiple of $\dfrac{\pi }{2}$ and $\dfrac{\theta -\alpha }{2}$ is any even multiple of $\pi $ .
Answer
562.5k+ views
Hint: Take $\sin \alpha $ to LHS and then apply the formula “$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$“. In the obtained equation to get $2\sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$. Now solve this equation to get values of $\dfrac{\theta -\alpha }{2}$ and $\dfrac{\theta +\alpha }{2}$ .
Complete step-by-step solution:
Given $\sin \theta =\operatorname{Sin}\alpha $
Taking all the terms to LHS, we will get,
$\sin \theta -\sin \alpha =0$ ………………………. (1)
We know that: $\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$.
Using this formula in equation (1), we will get,
$2\sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Dividing both sides of the equation by 2, we will get,
$\Rightarrow \sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$
Either $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ or $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Let us first solve $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ .
We know that $\sin \left( 0 \right)=0$ .
So, $\sin \left( \dfrac{\theta -\alpha }{2} \right)=\sin \left( 0 \right)$ .
We know that the general solution of $\sin y=\sin x$ is $x=n\pi +{{\left( -1 \right)}^{n}}y$ .
On putting $x=\dfrac{\left( \theta -\alpha \right)}{2}$ and $y=0$ we will get –
$\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi -0$
So, $ \dfrac{\theta -\alpha }{2}= n\pi $
Now let us solve $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
We know that \[\cos \left( \dfrac{\pi }{2} \right)=0\] .
So, $\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ .
We know that the general solution of $\cos y=\cos x$ is $y=x+2n\pi $ .
Where ‘n’ is an integer.
So, general solution of $\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ is
\[\begin{align}
& \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\
& \Rightarrow \dfrac{\theta -\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\
\end{align}\]
Taking $\left( \dfrac{\pi }{2} \right)$ in RHS, we will get,
$\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 1+4n \right)$
So, for equation (1) to hold,
Two possible cases,
Case: 1 $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ .
From above solution, we have got,
$\sin \left( \dfrac{\theta -\alpha }{2} \right)=0\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi $ .
i.e. $\dfrac{\theta -\alpha }{2}$ is a multiple of $\pi $ .
Case: 2 $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Form above solution, we have got that,
$\cos \left( \dfrac{\theta +\alpha }{2} \right)=0\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 4n+1 \right)$ .
i.e. $\dfrac{\theta +\alpha }{2}$ is an odd multiple of $\dfrac{\pi }{2}$ .
Hence option (A) is the correct answer.
Note: In the solution, we have used the general solution of $\sin y=\sin x$ is $x=n\pi +{{\left( -1 \right)}^{n}}y$
We can prove this as follows:
$\sin x=\sin y$
So, $x=2k\pi +y$ or $x=2k\pi +\pi -y$
$\Rightarrow x=2k\pi +y$ or $x=\left( 2k+1 \right)\pi -y$
$\Rightarrow x=2k\pi +\left( -1 \right)2ky$ or $x=\left( 2k+1 \right)\pi +\left( -1 \right)2k+1y$
$\Rightarrow x=n\pi +\left( -1 \right)ny$
Where, n is any integer i.e. $n=0,\pm 1,\pm 2,\pm 3............$
Complete step-by-step solution:
Given $\sin \theta =\operatorname{Sin}\alpha $
Taking all the terms to LHS, we will get,
$\sin \theta -\sin \alpha =0$ ………………………. (1)
We know that: $\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$.
Using this formula in equation (1), we will get,
$2\sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Dividing both sides of the equation by 2, we will get,
$\Rightarrow \sin \left( \dfrac{\theta -\alpha }{2} \right)\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$
Either $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ or $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Let us first solve $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ .
We know that $\sin \left( 0 \right)=0$ .
So, $\sin \left( \dfrac{\theta -\alpha }{2} \right)=\sin \left( 0 \right)$ .
We know that the general solution of $\sin y=\sin x$ is $x=n\pi +{{\left( -1 \right)}^{n}}y$ .
On putting $x=\dfrac{\left( \theta -\alpha \right)}{2}$ and $y=0$ we will get –
$\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi -0$
So, $ \dfrac{\theta -\alpha }{2}= n\pi $
Now let us solve $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
We know that \[\cos \left( \dfrac{\pi }{2} \right)=0\] .
So, $\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ .
We know that the general solution of $\cos y=\cos x$ is $y=x+2n\pi $ .
Where ‘n’ is an integer.
So, general solution of $\cos \left( \dfrac{\theta +\alpha }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)$ is
\[\begin{align}
& \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\
& \Rightarrow \dfrac{\theta -\alpha }{2}=\dfrac{\pi }{2}+2n\pi \\
\end{align}\]
Taking $\left( \dfrac{\pi }{2} \right)$ in RHS, we will get,
$\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 1+4n \right)$
So, for equation (1) to hold,
Two possible cases,
Case: 1 $\sin \left( \dfrac{\theta -\alpha }{2} \right)=0$ .
From above solution, we have got,
$\sin \left( \dfrac{\theta -\alpha }{2} \right)=0\Rightarrow \dfrac{\theta -\alpha }{2}=n\pi $ .
i.e. $\dfrac{\theta -\alpha }{2}$ is a multiple of $\pi $ .
Case: 2 $\cos \left( \dfrac{\theta +\alpha }{2} \right)=0$ .
Form above solution, we have got that,
$\cos \left( \dfrac{\theta +\alpha }{2} \right)=0\Rightarrow \dfrac{\theta +\alpha }{2}=\dfrac{\pi }{2}\left( 4n+1 \right)$ .
i.e. $\dfrac{\theta +\alpha }{2}$ is an odd multiple of $\dfrac{\pi }{2}$ .
Hence option (A) is the correct answer.
Note: In the solution, we have used the general solution of $\sin y=\sin x$ is $x=n\pi +{{\left( -1 \right)}^{n}}y$
We can prove this as follows:
$\sin x=\sin y$
So, $x=2k\pi +y$ or $x=2k\pi +\pi -y$
$\Rightarrow x=2k\pi +y$ or $x=\left( 2k+1 \right)\pi -y$
$\Rightarrow x=2k\pi +\left( -1 \right)2ky$ or $x=\left( 2k+1 \right)\pi +\left( -1 \right)2k+1y$
$\Rightarrow x=n\pi +\left( -1 \right)ny$
Where, n is any integer i.e. $n=0,\pm 1,\pm 2,\pm 3............$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

