
If we have a trigonometric equation $\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}$ , then find the value of $\sin \theta $ .
Answer
593.1k+ views
Hint: In question it is asked that, we have to find the value of $\sin \theta $ given that $\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}$.
So, to do so we will use identities and properties of trigonometric ratios such as $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ so as to obtain the $\sin \theta $.
Complete step-by-step solution:
We know that \[sin\text{ }\theta \text{ },\text{ }cos\text{ }\theta \text{ },\text{ }tan\text{ }\theta \text{ },\text{ }cot\text{ }\theta \text{ },\text{ }sec\text{ }\theta \text{ }and\text{ }cosec\text{ }\theta \] are trigonometric function, where \[\theta \] is the angle made by the hypotenuse with the base of triangle.
Now, in question it is given that $\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}$.
Now, also we know that tan A equal to the ratio of the sine function and cos A function that is $\tan A=\dfrac{\sin A}{\cos A}$.
And, also $sec\theta $ is equals to reciprocal of trigonometric function $\cos \theta $ that is $\sec \theta =\dfrac{1}{\cos \theta }$.
so, we can write $\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}$ as,
$\dfrac{\dfrac{1}{\cos \theta }-\dfrac{\sin A}{\cos A}}{\dfrac{1}{\cos \theta }+\dfrac{\sin A}{\cos A}}=\dfrac{1}{4}$.
On taking L.C.M in numerator an denominator, we get
$\dfrac{\dfrac{1-\sin \theta }{\cos \theta }}{\dfrac{1+\sin \theta }{\cos \theta }}=\dfrac{1}{4}$
Taking 4 from the denominator of right hand side to numerator of left hand side, $\dfrac{1+\sin \theta }{\cos \theta }$ from numerator of right hand side of left hand side to denominator of right hand side using cross multiplication, we get
$4\cdot \left( \dfrac{1-\sin \theta }{\cos \theta } \right)=\dfrac{1+\sin \theta }{\cos \theta }$……………........( i )
On solving brackets,
$\dfrac{4-4\sin \theta }{\cos \theta }=\dfrac{1+\sin \theta }{\cos \theta }$
On simplifying equation, we get
$4-4\sin \theta =1+\sin \theta $
Taking, $4\sin \theta $ from left hand side to right hand side and 1 from right hand side to left hand side,
$4-1=\sin \theta +4\sin \theta $
On solving, we get
$3=5\sin \theta $
Taking, 4 from the numerator of right hand side to denominator of left hand side, we get
$\sin \theta =\dfrac{3}{5}$
Hence, if $\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}$ , then the value of $\sin \theta $ is equals to $\dfrac{3}{5}$.
Note: One must know all trigonometric identities, properties, and relationships between trigonometric functions. While solving the question always use the most appropriate substitution of trigonometric relation which directly leads to the result. There may be calculation mistakes in cross multiplication, so be careful while solving an expression.
So, to do so we will use identities and properties of trigonometric ratios such as $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$ so as to obtain the $\sin \theta $.
Complete step-by-step solution:
We know that \[sin\text{ }\theta \text{ },\text{ }cos\text{ }\theta \text{ },\text{ }tan\text{ }\theta \text{ },\text{ }cot\text{ }\theta \text{ },\text{ }sec\text{ }\theta \text{ }and\text{ }cosec\text{ }\theta \] are trigonometric function, where \[\theta \] is the angle made by the hypotenuse with the base of triangle.
Now, in question it is given that $\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}$.
Now, also we know that tan A equal to the ratio of the sine function and cos A function that is $\tan A=\dfrac{\sin A}{\cos A}$.
And, also $sec\theta $ is equals to reciprocal of trigonometric function $\cos \theta $ that is $\sec \theta =\dfrac{1}{\cos \theta }$.
so, we can write $\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}$ as,
$\dfrac{\dfrac{1}{\cos \theta }-\dfrac{\sin A}{\cos A}}{\dfrac{1}{\cos \theta }+\dfrac{\sin A}{\cos A}}=\dfrac{1}{4}$.
On taking L.C.M in numerator an denominator, we get
$\dfrac{\dfrac{1-\sin \theta }{\cos \theta }}{\dfrac{1+\sin \theta }{\cos \theta }}=\dfrac{1}{4}$
Taking 4 from the denominator of right hand side to numerator of left hand side, $\dfrac{1+\sin \theta }{\cos \theta }$ from numerator of right hand side of left hand side to denominator of right hand side using cross multiplication, we get
$4\cdot \left( \dfrac{1-\sin \theta }{\cos \theta } \right)=\dfrac{1+\sin \theta }{\cos \theta }$……………........( i )
On solving brackets,
$\dfrac{4-4\sin \theta }{\cos \theta }=\dfrac{1+\sin \theta }{\cos \theta }$
On simplifying equation, we get
$4-4\sin \theta =1+\sin \theta $
Taking, $4\sin \theta $ from left hand side to right hand side and 1 from right hand side to left hand side,
$4-1=\sin \theta +4\sin \theta $
On solving, we get
$3=5\sin \theta $
Taking, 4 from the numerator of right hand side to denominator of left hand side, we get
$\sin \theta =\dfrac{3}{5}$
Hence, if $\dfrac{\sec \theta -\tan \theta }{\sec \theta +\tan \theta }=\dfrac{1}{4}$ , then the value of $\sin \theta $ is equals to $\dfrac{3}{5}$.
Note: One must know all trigonometric identities, properties, and relationships between trigonometric functions. While solving the question always use the most appropriate substitution of trigonometric relation which directly leads to the result. There may be calculation mistakes in cross multiplication, so be careful while solving an expression.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

