If we have a logarithmic expression \[\log x:\log y:\log z = (y - z):(z - x):(x - y)\] then which of the following expressions is true?
A). \[{x^x}.{y^y}.{z^z} = 1\]
B). \[{x^y}.{y^z}.{z^x} = 1\]
C). \[\sqrt[x]{x}\sqrt[y]{y}\sqrt[z]{z} = 1\]
D). None of these
Answer
Verified
475.5k+ views
Hint: This is a typical logarithmic property question. We will need to use the property \[x\log x = \log \left( {{x^x}} \right)\] to get the final answer. Also we will need some properties of ratio to get started.
Complete step-by-step answer:
It is given that \[\log x:\log y:\log z = (y - z):(z - x):(x - y)\]
Then we can let that,
\[\dfrac{{\log x}}{{y - z}} = \dfrac{{\log y}}{{z - x}} = \dfrac{{\log z}}{{y - z}} = k\]
So from here we can get
\[\begin{array}{l}
\log x = k(y - z)...................................(i)\\
\log y = k(z - x)................................(ii)\\
\log z = k(x - y).................................(iii)
\end{array}\]
Now if we multiply equation (i) with x, equation (ii) with y and equation(iii) with z
We will get its as
\[\begin{array}{l}
x\log x = kx(y - z)\\
y\log y = ky(z - x)\\
z\log z = kz(x - y)
\end{array}\]
So now let us add all three of them and we will get it as
\[\begin{array}{l}
\therefore x\log x + y\log y + z\log z = kx(y - z) + ky(z - x) + kz(x - y)\\
\Rightarrow x\log x + y\log y + z\log z = k\left( {xy - xz + yz - xy + yz + xz - yz} \right)\\
\Rightarrow x\log x + y\log y + z\log z = k \times 0\\
\Rightarrow x\log x + y\log y + z\log z = 0
\end{array}\]
Now by using the property of log, \[x\log x = \log \left( {{x^x}} \right)\] we will get the whole thing as
\[ \Rightarrow \log \left( {{x^x}} \right) + \log \left( {{y^y}} \right) + \log \left( {{z^z}} \right) = 0\]
Now again we know that \[\log x + \log y + \log z = \log (xyz)\]
So by using this property of log we are getting
\[ \Rightarrow \log \left( {{x^x}.{y^y}.{z^z}} \right) = 0\]
Again if we take the log to the other side we will get it as
\[ \Rightarrow \left( {{x^x}.{y^y}.{z^z}} \right) = 1\]
Which is the correct answer and which means that option A is the correct option here.
Note: \[\log x = 0\] is \[x = 1\] because we know that logarithm in mathematics is treated as log base e so here \[{\log _e}x = 0\] is basically \[x = {e^0} = 1\] . In other words we can also say that the antilog of 0 is 1.
Complete step-by-step answer:
It is given that \[\log x:\log y:\log z = (y - z):(z - x):(x - y)\]
Then we can let that,
\[\dfrac{{\log x}}{{y - z}} = \dfrac{{\log y}}{{z - x}} = \dfrac{{\log z}}{{y - z}} = k\]
So from here we can get
\[\begin{array}{l}
\log x = k(y - z)...................................(i)\\
\log y = k(z - x)................................(ii)\\
\log z = k(x - y).................................(iii)
\end{array}\]
Now if we multiply equation (i) with x, equation (ii) with y and equation(iii) with z
We will get its as
\[\begin{array}{l}
x\log x = kx(y - z)\\
y\log y = ky(z - x)\\
z\log z = kz(x - y)
\end{array}\]
So now let us add all three of them and we will get it as
\[\begin{array}{l}
\therefore x\log x + y\log y + z\log z = kx(y - z) + ky(z - x) + kz(x - y)\\
\Rightarrow x\log x + y\log y + z\log z = k\left( {xy - xz + yz - xy + yz + xz - yz} \right)\\
\Rightarrow x\log x + y\log y + z\log z = k \times 0\\
\Rightarrow x\log x + y\log y + z\log z = 0
\end{array}\]
Now by using the property of log, \[x\log x = \log \left( {{x^x}} \right)\] we will get the whole thing as
\[ \Rightarrow \log \left( {{x^x}} \right) + \log \left( {{y^y}} \right) + \log \left( {{z^z}} \right) = 0\]
Now again we know that \[\log x + \log y + \log z = \log (xyz)\]
So by using this property of log we are getting
\[ \Rightarrow \log \left( {{x^x}.{y^y}.{z^z}} \right) = 0\]
Again if we take the log to the other side we will get it as
\[ \Rightarrow \left( {{x^x}.{y^y}.{z^z}} \right) = 1\]
Which is the correct answer and which means that option A is the correct option here.
Note: \[\log x = 0\] is \[x = 1\] because we know that logarithm in mathematics is treated as log base e so here \[{\log _e}x = 0\] is basically \[x = {e^0} = 1\] . In other words we can also say that the antilog of 0 is 1.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE