Answer
Verified
446.7k+ views
Hint: This is a typical logarithmic property question. We will need to use the property \[x\log x = \log \left( {{x^x}} \right)\] to get the final answer. Also we will need some properties of ratio to get started.
Complete step-by-step answer:
It is given that \[\log x:\log y:\log z = (y - z):(z - x):(x - y)\]
Then we can let that,
\[\dfrac{{\log x}}{{y - z}} = \dfrac{{\log y}}{{z - x}} = \dfrac{{\log z}}{{y - z}} = k\]
So from here we can get
\[\begin{array}{l}
\log x = k(y - z)...................................(i)\\
\log y = k(z - x)................................(ii)\\
\log z = k(x - y).................................(iii)
\end{array}\]
Now if we multiply equation (i) with x, equation (ii) with y and equation(iii) with z
We will get its as
\[\begin{array}{l}
x\log x = kx(y - z)\\
y\log y = ky(z - x)\\
z\log z = kz(x - y)
\end{array}\]
So now let us add all three of them and we will get it as
\[\begin{array}{l}
\therefore x\log x + y\log y + z\log z = kx(y - z) + ky(z - x) + kz(x - y)\\
\Rightarrow x\log x + y\log y + z\log z = k\left( {xy - xz + yz - xy + yz + xz - yz} \right)\\
\Rightarrow x\log x + y\log y + z\log z = k \times 0\\
\Rightarrow x\log x + y\log y + z\log z = 0
\end{array}\]
Now by using the property of log, \[x\log x = \log \left( {{x^x}} \right)\] we will get the whole thing as
\[ \Rightarrow \log \left( {{x^x}} \right) + \log \left( {{y^y}} \right) + \log \left( {{z^z}} \right) = 0\]
Now again we know that \[\log x + \log y + \log z = \log (xyz)\]
So by using this property of log we are getting
\[ \Rightarrow \log \left( {{x^x}.{y^y}.{z^z}} \right) = 0\]
Again if we take the log to the other side we will get it as
\[ \Rightarrow \left( {{x^x}.{y^y}.{z^z}} \right) = 1\]
Which is the correct answer and which means that option A is the correct option here.
Note: \[\log x = 0\] is \[x = 1\] because we know that logarithm in mathematics is treated as log base e so here \[{\log _e}x = 0\] is basically \[x = {e^0} = 1\] . In other words we can also say that the antilog of 0 is 1.
Complete step-by-step answer:
It is given that \[\log x:\log y:\log z = (y - z):(z - x):(x - y)\]
Then we can let that,
\[\dfrac{{\log x}}{{y - z}} = \dfrac{{\log y}}{{z - x}} = \dfrac{{\log z}}{{y - z}} = k\]
So from here we can get
\[\begin{array}{l}
\log x = k(y - z)...................................(i)\\
\log y = k(z - x)................................(ii)\\
\log z = k(x - y).................................(iii)
\end{array}\]
Now if we multiply equation (i) with x, equation (ii) with y and equation(iii) with z
We will get its as
\[\begin{array}{l}
x\log x = kx(y - z)\\
y\log y = ky(z - x)\\
z\log z = kz(x - y)
\end{array}\]
So now let us add all three of them and we will get it as
\[\begin{array}{l}
\therefore x\log x + y\log y + z\log z = kx(y - z) + ky(z - x) + kz(x - y)\\
\Rightarrow x\log x + y\log y + z\log z = k\left( {xy - xz + yz - xy + yz + xz - yz} \right)\\
\Rightarrow x\log x + y\log y + z\log z = k \times 0\\
\Rightarrow x\log x + y\log y + z\log z = 0
\end{array}\]
Now by using the property of log, \[x\log x = \log \left( {{x^x}} \right)\] we will get the whole thing as
\[ \Rightarrow \log \left( {{x^x}} \right) + \log \left( {{y^y}} \right) + \log \left( {{z^z}} \right) = 0\]
Now again we know that \[\log x + \log y + \log z = \log (xyz)\]
So by using this property of log we are getting
\[ \Rightarrow \log \left( {{x^x}.{y^y}.{z^z}} \right) = 0\]
Again if we take the log to the other side we will get it as
\[ \Rightarrow \left( {{x^x}.{y^y}.{z^z}} \right) = 1\]
Which is the correct answer and which means that option A is the correct option here.
Note: \[\log x = 0\] is \[x = 1\] because we know that logarithm in mathematics is treated as log base e so here \[{\log _e}x = 0\] is basically \[x = {e^0} = 1\] . In other words we can also say that the antilog of 0 is 1.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE