
If we are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , then find the value of x.
(a) $ \dfrac{\pi }{2} $ .
(b) $ \pi $ .
(c) $ \dfrac{\pi }{6} $ .
(d) $ \dfrac{\pi }{3} $ .
Answer
486k+ views
Hint: We convert $ 2{{\tan }^{-1}}\left( \cos x \right) $ to $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right) $ for applying $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ . After applying the formula, we obtain a value for $ \cos x $ . Using the value of $ \cos x $ , we find the value of x. We verify by substituting the value of ‘x’ in the original given equation.
Complete step-by-step answer:
We are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , and we need to find the value of ‘x’.
We have $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ for ab<1.
We know the value of cos x lies in the interval $ \left[ -1,1 \right] $ and the value of $ \cos x\times \cos x $ lies in the interval $ \left[ 0,1 \right] $ .
So, we have $ {{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\left( \cos x\times \cos x \right)} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know from the trigonometric identity $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ \operatorname{cosec}x=\dfrac{1}{\sin x} $ .
We have $ {{\tan }^{-1}}\left( 2\cos x.{{\operatorname{cosec}}^{2}}x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that if $ {{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( y \right) $ , then x = y.
We have $ 2\cos x.{{\operatorname{cosec}}^{2}}x={{\operatorname{cosec}}^{2}}x $ .
We have 2cos x = 1.
We have $ \cos x=\dfrac{1}{2} $ .
We have \[x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\].
We have $ x={{60}^{o}} $ .
We know that $ \pi ={{180}^{o}} $ .
We have $ x={{60}^{o}}\times \dfrac{{{180}^{o}}}{{{180}^{o}}} $ .
We have \[x=\dfrac{\pi }{3}\].
We got the value of ‘x’ as $ \dfrac{\pi }{3} $ .
Now, we verify the obtained result.
We have $ 2{{\tan }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}\left( \dfrac{\pi }{3} \right) \right) $ .
We know that $ \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} $ and $ \operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}} $ .
So, we have $ 2{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
Since, $ \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4} $ , which is less than 1, we use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{2}+\dfrac{1}{2}}{1-\left( \dfrac{1}{2}\times \dfrac{1}{2} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{1-\left( \dfrac{1}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{\dfrac{3}{4}} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{4}{3} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
∴ We have proved that the value of ‘x’ is $ \dfrac{\pi }{3} $ .
So, the correct answer is “Option D”.
Note: We should not every time use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ as it depends on the value of ab. We always verify the value obtained if the given equation of inverse trigonometric functions consists of arctanx $ \left( {{\tan }^{-1}}x \right) $ . Sometimes, the obtained value may not satisfy the given equation in such cases we declare that ‘x’ doesn’t have a solution.
Complete step-by-step answer:
We are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , and we need to find the value of ‘x’.
We have $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ for ab<1.
We know the value of cos x lies in the interval $ \left[ -1,1 \right] $ and the value of $ \cos x\times \cos x $ lies in the interval $ \left[ 0,1 \right] $ .
So, we have $ {{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\left( \cos x\times \cos x \right)} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know from the trigonometric identity $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ \operatorname{cosec}x=\dfrac{1}{\sin x} $ .
We have $ {{\tan }^{-1}}\left( 2\cos x.{{\operatorname{cosec}}^{2}}x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that if $ {{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( y \right) $ , then x = y.
We have $ 2\cos x.{{\operatorname{cosec}}^{2}}x={{\operatorname{cosec}}^{2}}x $ .
We have 2cos x = 1.
We have $ \cos x=\dfrac{1}{2} $ .
We have \[x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\].
We have $ x={{60}^{o}} $ .
We know that $ \pi ={{180}^{o}} $ .
We have $ x={{60}^{o}}\times \dfrac{{{180}^{o}}}{{{180}^{o}}} $ .
We have \[x=\dfrac{\pi }{3}\].
We got the value of ‘x’ as $ \dfrac{\pi }{3} $ .
Now, we verify the obtained result.
We have $ 2{{\tan }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}\left( \dfrac{\pi }{3} \right) \right) $ .
We know that $ \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} $ and $ \operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}} $ .
So, we have $ 2{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
Since, $ \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4} $ , which is less than 1, we use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{2}+\dfrac{1}{2}}{1-\left( \dfrac{1}{2}\times \dfrac{1}{2} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{1-\left( \dfrac{1}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{\dfrac{3}{4}} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{4}{3} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
∴ We have proved that the value of ‘x’ is $ \dfrac{\pi }{3} $ .
So, the correct answer is “Option D”.
Note: We should not every time use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ as it depends on the value of ab. We always verify the value obtained if the given equation of inverse trigonometric functions consists of arctanx $ \left( {{\tan }^{-1}}x \right) $ . Sometimes, the obtained value may not satisfy the given equation in such cases we declare that ‘x’ doesn’t have a solution.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
