Answer
Verified
455.1k+ views
Hint: We convert $ 2{{\tan }^{-1}}\left( \cos x \right) $ to $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right) $ for applying $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ . After applying the formula, we obtain a value for $ \cos x $ . Using the value of $ \cos x $ , we find the value of x. We verify by substituting the value of ‘x’ in the original given equation.
Complete step-by-step answer:
We are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , and we need to find the value of ‘x’.
We have $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ for ab<1.
We know the value of cos x lies in the interval $ \left[ -1,1 \right] $ and the value of $ \cos x\times \cos x $ lies in the interval $ \left[ 0,1 \right] $ .
So, we have $ {{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\left( \cos x\times \cos x \right)} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know from the trigonometric identity $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ \operatorname{cosec}x=\dfrac{1}{\sin x} $ .
We have $ {{\tan }^{-1}}\left( 2\cos x.{{\operatorname{cosec}}^{2}}x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that if $ {{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( y \right) $ , then x = y.
We have $ 2\cos x.{{\operatorname{cosec}}^{2}}x={{\operatorname{cosec}}^{2}}x $ .
We have 2cos x = 1.
We have $ \cos x=\dfrac{1}{2} $ .
We have \[x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\].
We have $ x={{60}^{o}} $ .
We know that $ \pi ={{180}^{o}} $ .
We have $ x={{60}^{o}}\times \dfrac{{{180}^{o}}}{{{180}^{o}}} $ .
We have \[x=\dfrac{\pi }{3}\].
We got the value of ‘x’ as $ \dfrac{\pi }{3} $ .
Now, we verify the obtained result.
We have $ 2{{\tan }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}\left( \dfrac{\pi }{3} \right) \right) $ .
We know that $ \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} $ and $ \operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}} $ .
So, we have $ 2{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
Since, $ \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4} $ , which is less than 1, we use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{2}+\dfrac{1}{2}}{1-\left( \dfrac{1}{2}\times \dfrac{1}{2} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{1-\left( \dfrac{1}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{\dfrac{3}{4}} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{4}{3} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
∴ We have proved that the value of ‘x’ is $ \dfrac{\pi }{3} $ .
So, the correct answer is “Option D”.
Note: We should not every time use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ as it depends on the value of ab. We always verify the value obtained if the given equation of inverse trigonometric functions consists of arctanx $ \left( {{\tan }^{-1}}x \right) $ . Sometimes, the obtained value may not satisfy the given equation in such cases we declare that ‘x’ doesn’t have a solution.
Complete step-by-step answer:
We are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , and we need to find the value of ‘x’.
We have $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ for ab<1.
We know the value of cos x lies in the interval $ \left[ -1,1 \right] $ and the value of $ \cos x\times \cos x $ lies in the interval $ \left[ 0,1 \right] $ .
So, we have $ {{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\left( \cos x\times \cos x \right)} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know from the trigonometric identity $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ \operatorname{cosec}x=\dfrac{1}{\sin x} $ .
We have $ {{\tan }^{-1}}\left( 2\cos x.{{\operatorname{cosec}}^{2}}x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that if $ {{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( y \right) $ , then x = y.
We have $ 2\cos x.{{\operatorname{cosec}}^{2}}x={{\operatorname{cosec}}^{2}}x $ .
We have 2cos x = 1.
We have $ \cos x=\dfrac{1}{2} $ .
We have \[x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\].
We have $ x={{60}^{o}} $ .
We know that $ \pi ={{180}^{o}} $ .
We have $ x={{60}^{o}}\times \dfrac{{{180}^{o}}}{{{180}^{o}}} $ .
We have \[x=\dfrac{\pi }{3}\].
We got the value of ‘x’ as $ \dfrac{\pi }{3} $ .
Now, we verify the obtained result.
We have $ 2{{\tan }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}\left( \dfrac{\pi }{3} \right) \right) $ .
We know that $ \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} $ and $ \operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}} $ .
So, we have $ 2{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
Since, $ \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4} $ , which is less than 1, we use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{2}+\dfrac{1}{2}}{1-\left( \dfrac{1}{2}\times \dfrac{1}{2} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{1-\left( \dfrac{1}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{\dfrac{3}{4}} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{4}{3} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
∴ We have proved that the value of ‘x’ is $ \dfrac{\pi }{3} $ .
So, the correct answer is “Option D”.
Note: We should not every time use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ as it depends on the value of ab. We always verify the value obtained if the given equation of inverse trigonometric functions consists of arctanx $ \left( {{\tan }^{-1}}x \right) $ . Sometimes, the obtained value may not satisfy the given equation in such cases we declare that ‘x’ doesn’t have a solution.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Harsha Charita was written by A Kalidasa B Vishakhadatta class 7 social science CBSE
Which are the Top 10 Largest Countries of the World?
Banabhatta wrote Harshavardhanas biography What is class 6 social science CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE