
If we are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , then find the value of x.
(a) $ \dfrac{\pi }{2} $ .
(b) $ \pi $ .
(c) $ \dfrac{\pi }{6} $ .
(d) $ \dfrac{\pi }{3} $ .
Answer
593.4k+ views
Hint: We convert $ 2{{\tan }^{-1}}\left( \cos x \right) $ to $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right) $ for applying $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ . After applying the formula, we obtain a value for $ \cos x $ . Using the value of $ \cos x $ , we find the value of x. We verify by substituting the value of ‘x’ in the original given equation.
Complete step-by-step answer:
We are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , and we need to find the value of ‘x’.
We have $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ for ab<1.
We know the value of cos x lies in the interval $ \left[ -1,1 \right] $ and the value of $ \cos x\times \cos x $ lies in the interval $ \left[ 0,1 \right] $ .
So, we have $ {{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\left( \cos x\times \cos x \right)} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know from the trigonometric identity $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ \operatorname{cosec}x=\dfrac{1}{\sin x} $ .
We have $ {{\tan }^{-1}}\left( 2\cos x.{{\operatorname{cosec}}^{2}}x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that if $ {{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( y \right) $ , then x = y.
We have $ 2\cos x.{{\operatorname{cosec}}^{2}}x={{\operatorname{cosec}}^{2}}x $ .
We have 2cos x = 1.
We have $ \cos x=\dfrac{1}{2} $ .
We have \[x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\].
We have $ x={{60}^{o}} $ .
We know that $ \pi ={{180}^{o}} $ .
We have $ x={{60}^{o}}\times \dfrac{{{180}^{o}}}{{{180}^{o}}} $ .
We have \[x=\dfrac{\pi }{3}\].
We got the value of ‘x’ as $ \dfrac{\pi }{3} $ .
Now, we verify the obtained result.
We have $ 2{{\tan }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}\left( \dfrac{\pi }{3} \right) \right) $ .
We know that $ \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} $ and $ \operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}} $ .
So, we have $ 2{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
Since, $ \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4} $ , which is less than 1, we use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{2}+\dfrac{1}{2}}{1-\left( \dfrac{1}{2}\times \dfrac{1}{2} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{1-\left( \dfrac{1}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{\dfrac{3}{4}} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{4}{3} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
∴ We have proved that the value of ‘x’ is $ \dfrac{\pi }{3} $ .
So, the correct answer is “Option D”.
Note: We should not every time use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ as it depends on the value of ab. We always verify the value obtained if the given equation of inverse trigonometric functions consists of arctanx $ \left( {{\tan }^{-1}}x \right) $ . Sometimes, the obtained value may not satisfy the given equation in such cases we declare that ‘x’ doesn’t have a solution.
Complete step-by-step answer:
We are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , and we need to find the value of ‘x’.
We have $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ for ab<1.
We know the value of cos x lies in the interval $ \left[ -1,1 \right] $ and the value of $ \cos x\times \cos x $ lies in the interval $ \left[ 0,1 \right] $ .
So, we have $ {{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\left( \cos x\times \cos x \right)} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know from the trigonometric identity $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ \operatorname{cosec}x=\dfrac{1}{\sin x} $ .
We have $ {{\tan }^{-1}}\left( 2\cos x.{{\operatorname{cosec}}^{2}}x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that if $ {{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( y \right) $ , then x = y.
We have $ 2\cos x.{{\operatorname{cosec}}^{2}}x={{\operatorname{cosec}}^{2}}x $ .
We have 2cos x = 1.
We have $ \cos x=\dfrac{1}{2} $ .
We have \[x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\].
We have $ x={{60}^{o}} $ .
We know that $ \pi ={{180}^{o}} $ .
We have $ x={{60}^{o}}\times \dfrac{{{180}^{o}}}{{{180}^{o}}} $ .
We have \[x=\dfrac{\pi }{3}\].
We got the value of ‘x’ as $ \dfrac{\pi }{3} $ .
Now, we verify the obtained result.
We have $ 2{{\tan }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}\left( \dfrac{\pi }{3} \right) \right) $ .
We know that $ \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} $ and $ \operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}} $ .
So, we have $ 2{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
Since, $ \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4} $ , which is less than 1, we use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{2}+\dfrac{1}{2}}{1-\left( \dfrac{1}{2}\times \dfrac{1}{2} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{1-\left( \dfrac{1}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{\dfrac{3}{4}} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{4}{3} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
∴ We have proved that the value of ‘x’ is $ \dfrac{\pi }{3} $ .
So, the correct answer is “Option D”.
Note: We should not every time use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ as it depends on the value of ab. We always verify the value obtained if the given equation of inverse trigonometric functions consists of arctanx $ \left( {{\tan }^{-1}}x \right) $ . Sometimes, the obtained value may not satisfy the given equation in such cases we declare that ‘x’ doesn’t have a solution.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

