
If we are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , then find the value of x.
(a) $ \dfrac{\pi }{2} $ .
(b) $ \pi $ .
(c) $ \dfrac{\pi }{6} $ .
(d) $ \dfrac{\pi }{3} $ .
Answer
579.6k+ views
Hint: We convert $ 2{{\tan }^{-1}}\left( \cos x \right) $ to $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right) $ for applying $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ . After applying the formula, we obtain a value for $ \cos x $ . Using the value of $ \cos x $ , we find the value of x. We verify by substituting the value of ‘x’ in the original given equation.
Complete step-by-step answer:
We are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , and we need to find the value of ‘x’.
We have $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ for ab<1.
We know the value of cos x lies in the interval $ \left[ -1,1 \right] $ and the value of $ \cos x\times \cos x $ lies in the interval $ \left[ 0,1 \right] $ .
So, we have $ {{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\left( \cos x\times \cos x \right)} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know from the trigonometric identity $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ \operatorname{cosec}x=\dfrac{1}{\sin x} $ .
We have $ {{\tan }^{-1}}\left( 2\cos x.{{\operatorname{cosec}}^{2}}x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that if $ {{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( y \right) $ , then x = y.
We have $ 2\cos x.{{\operatorname{cosec}}^{2}}x={{\operatorname{cosec}}^{2}}x $ .
We have 2cos x = 1.
We have $ \cos x=\dfrac{1}{2} $ .
We have \[x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\].
We have $ x={{60}^{o}} $ .
We know that $ \pi ={{180}^{o}} $ .
We have $ x={{60}^{o}}\times \dfrac{{{180}^{o}}}{{{180}^{o}}} $ .
We have \[x=\dfrac{\pi }{3}\].
We got the value of ‘x’ as $ \dfrac{\pi }{3} $ .
Now, we verify the obtained result.
We have $ 2{{\tan }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}\left( \dfrac{\pi }{3} \right) \right) $ .
We know that $ \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} $ and $ \operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}} $ .
So, we have $ 2{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
Since, $ \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4} $ , which is less than 1, we use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{2}+\dfrac{1}{2}}{1-\left( \dfrac{1}{2}\times \dfrac{1}{2} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{1-\left( \dfrac{1}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{\dfrac{3}{4}} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{4}{3} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
∴ We have proved that the value of ‘x’ is $ \dfrac{\pi }{3} $ .
So, the correct answer is “Option D”.
Note: We should not every time use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ as it depends on the value of ab. We always verify the value obtained if the given equation of inverse trigonometric functions consists of arctanx $ \left( {{\tan }^{-1}}x \right) $ . Sometimes, the obtained value may not satisfy the given equation in such cases we declare that ‘x’ doesn’t have a solution.
Complete step-by-step answer:
We are given $ 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ , and we need to find the value of ‘x’.
We have $ {{\tan }^{-1}}\left( \cos x \right)+{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ for ab<1.
We know the value of cos x lies in the interval $ \left[ -1,1 \right] $ and the value of $ \cos x\times \cos x $ lies in the interval $ \left[ 0,1 \right] $ .
So, we have $ {{\tan }^{-1}}\left( \dfrac{\cos x+\cos x}{1-\left( \cos x\times \cos x \right)} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{1-{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know from the trigonometric identity $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ .
We have $ {{\tan }^{-1}}\left( \dfrac{2\cos x}{{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that $ \operatorname{cosec}x=\dfrac{1}{\sin x} $ .
We have $ {{\tan }^{-1}}\left( 2\cos x.{{\operatorname{cosec}}^{2}}x \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}x \right) $ .
We know that if $ {{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( y \right) $ , then x = y.
We have $ 2\cos x.{{\operatorname{cosec}}^{2}}x={{\operatorname{cosec}}^{2}}x $ .
We have 2cos x = 1.
We have $ \cos x=\dfrac{1}{2} $ .
We have \[x={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\].
We have $ x={{60}^{o}} $ .
We know that $ \pi ={{180}^{o}} $ .
We have $ x={{60}^{o}}\times \dfrac{{{180}^{o}}}{{{180}^{o}}} $ .
We have \[x=\dfrac{\pi }{3}\].
We got the value of ‘x’ as $ \dfrac{\pi }{3} $ .
Now, we verify the obtained result.
We have $ 2{{\tan }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\tan }^{-1}}\left( {{\operatorname{cosec}}^{2}}\left( \dfrac{\pi }{3} \right) \right) $ .
We know that $ \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} $ and $ \operatorname{cosec}\left( \dfrac{\pi }{3} \right)=\dfrac{2}{\sqrt{3}} $ .
So, we have $ 2{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{2} \right)+{{\tan }^{-1}}\left( \dfrac{1}{2} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
Since, $ \dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4} $ , which is less than 1, we use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{2}+\dfrac{1}{2}}{1-\left( \dfrac{1}{2}\times \dfrac{1}{2} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{1-\left( \dfrac{1}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{1}{\dfrac{3}{4}} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
We have $ {{\tan }^{-1}}\left( \dfrac{4}{3} \right)={{\tan }^{-1}}\left( \dfrac{4}{3} \right) $ .
∴ We have proved that the value of ‘x’ is $ \dfrac{\pi }{3} $ .
So, the correct answer is “Option D”.
Note: We should not every time use $ {{\tan }^{-1}}\left( a \right)+{{\tan }^{-1}}\left( b \right)={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) $ as it depends on the value of ab. We always verify the value obtained if the given equation of inverse trigonometric functions consists of arctanx $ \left( {{\tan }^{-1}}x \right) $ . Sometimes, the obtained value may not satisfy the given equation in such cases we declare that ‘x’ doesn’t have a solution.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

