If \[\vec{a}=2\hat{i}+2\hat{j}+3\hat{k},\vec{b}=-\hat{i}+2\hat{j}+\hat{k}\]and \[\vec{c}=3\hat{i}+\hat{j}\] such that \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\] then find the value of \[\lambda \].
Last updated date: 17th Mar 2023
•
Total views: 304.5k
•
Views today: 7.83k
Answer
304.5k+ views
Hint: To solve the question, we have to apply the properties of the dot product of vectors to calculate the value of \[\lambda \].
Complete step-by-step Solution:
The vector \[\vec{a}+\lambda \vec{b}\] is given that it is perpendicular to the vector \[\vec{c}\].
The given values of the vectors \[\vec{a},\vec{b},\vec{c}\] are \[2\hat{i}+2\hat{j}+3\hat{k}\] , \[-\hat{i}+2\hat{j}+\hat{k}\], \[3\hat{i}+\hat{j}\]respectively.
By substituting the value of vector \[\vec{a},\vec{b}\] in \[\vec{a}+\lambda \vec{b}\] we get,
\[\vec{a}+\lambda \vec{b}=2\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( -\hat{i}+2\hat{j}+\hat{k} \right)\]
\[=\left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k}\]
We know that a dot product of \[\vec{a},\vec{b}\]is given the formula \[\vec{a}.\vec{b}=\left\| {\vec{a}} \right\|\left\| {\vec{b}} \right\|\cos \theta \]
Where \[\theta ,\left\| {} \right\|\] represent the angle between the given vectors and the magnitude of the vector respectively.
Now we know that when \[\theta ={{90}^{0}}\], \[\cos \left( {{90}^{0}} \right)=0\] thus the dot product of perpendicular vectors is 0.
Thus, the product of the vectors \[\vec{a}+\lambda \vec{b}\] and \[\vec{c}\]is equal to 0.
\[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=\left( \left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k} \right).\left( 3\hat{i}+\hat{j} \right)\]
\[=\left( 3\left( 2-\lambda \right)\hat{i}.\hat{i}+3\left( 2+2\lambda \right)\hat{j}.\hat{i}+3\left( 3+\lambda \right)\hat{k}.\hat{i} \right)+\left( \left( 2-\lambda \right)\hat{i}.\hat{j}+\left( 2+2\lambda \right)\hat{j}.\hat{j}+\left( 3+\lambda \right)\hat{k}.\hat{j} \right)\] ….. (1)
We know that the dot product of the orthogonal vectors \[\hat{i},\hat{j},\hat{k}\] is given by the following values.
\[\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{i}.\hat{k}=0\] and \[\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1\]
By substituting the values in equation (1) and equating it the value of 0 since \[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=0\]we get,
\[\left( 3\left( 2-\lambda \right)\times 1+3\left( 2+2\lambda \right)\times 0+3\left( 3+\lambda \right)\times 0 \right)+\left( \left( 2-\lambda \right)\times 0+\left( 2+2\lambda \right)\times 1+\left( 3+\lambda \right)\times 0 \right)=0\]
\[3\left( 2-\lambda \right)+\left( 2+2\lambda \right)=0\]
\[6-3\lambda +2+2\lambda =0\]
\[8-\lambda =0\]
\[\lambda =8\]
Thus, for the given condition \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\], the value of \[\lambda \]is equal to 8.
Note: The possibility of mistake can be not able to analyse that dot product can be used for solving the given problem. The other possibility of mistake is doing simple multiplication using a vector product, the dot product of vectors is different from normal scalar multiplication. The alternative way of solving the question can be applying the properties of cross product of vectors. The cross product of perpendicular vectors is equal to 1 and the cross-product property is \[\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0\].
Complete step-by-step Solution:
The vector \[\vec{a}+\lambda \vec{b}\] is given that it is perpendicular to the vector \[\vec{c}\].
The given values of the vectors \[\vec{a},\vec{b},\vec{c}\] are \[2\hat{i}+2\hat{j}+3\hat{k}\] , \[-\hat{i}+2\hat{j}+\hat{k}\], \[3\hat{i}+\hat{j}\]respectively.
By substituting the value of vector \[\vec{a},\vec{b}\] in \[\vec{a}+\lambda \vec{b}\] we get,
\[\vec{a}+\lambda \vec{b}=2\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( -\hat{i}+2\hat{j}+\hat{k} \right)\]
\[=\left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k}\]
We know that a dot product of \[\vec{a},\vec{b}\]is given the formula \[\vec{a}.\vec{b}=\left\| {\vec{a}} \right\|\left\| {\vec{b}} \right\|\cos \theta \]
Where \[\theta ,\left\| {} \right\|\] represent the angle between the given vectors and the magnitude of the vector respectively.
Now we know that when \[\theta ={{90}^{0}}\], \[\cos \left( {{90}^{0}} \right)=0\] thus the dot product of perpendicular vectors is 0.
Thus, the product of the vectors \[\vec{a}+\lambda \vec{b}\] and \[\vec{c}\]is equal to 0.
\[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=\left( \left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k} \right).\left( 3\hat{i}+\hat{j} \right)\]
\[=\left( 3\left( 2-\lambda \right)\hat{i}.\hat{i}+3\left( 2+2\lambda \right)\hat{j}.\hat{i}+3\left( 3+\lambda \right)\hat{k}.\hat{i} \right)+\left( \left( 2-\lambda \right)\hat{i}.\hat{j}+\left( 2+2\lambda \right)\hat{j}.\hat{j}+\left( 3+\lambda \right)\hat{k}.\hat{j} \right)\] ….. (1)
We know that the dot product of the orthogonal vectors \[\hat{i},\hat{j},\hat{k}\] is given by the following values.
\[\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{i}.\hat{k}=0\] and \[\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1\]
By substituting the values in equation (1) and equating it the value of 0 since \[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=0\]we get,
\[\left( 3\left( 2-\lambda \right)\times 1+3\left( 2+2\lambda \right)\times 0+3\left( 3+\lambda \right)\times 0 \right)+\left( \left( 2-\lambda \right)\times 0+\left( 2+2\lambda \right)\times 1+\left( 3+\lambda \right)\times 0 \right)=0\]
\[3\left( 2-\lambda \right)+\left( 2+2\lambda \right)=0\]
\[6-3\lambda +2+2\lambda =0\]
\[8-\lambda =0\]
\[\lambda =8\]
Thus, for the given condition \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\], the value of \[\lambda \]is equal to 8.
Note: The possibility of mistake can be not able to analyse that dot product can be used for solving the given problem. The other possibility of mistake is doing simple multiplication using a vector product, the dot product of vectors is different from normal scalar multiplication. The alternative way of solving the question can be applying the properties of cross product of vectors. The cross product of perpendicular vectors is equal to 1 and the cross-product property is \[\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0\].
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
