Answer

Verified

450.3k+ views

Hint: To solve the question, we have to apply the properties of the dot product of vectors to calculate the value of \[\lambda \].

Complete step-by-step Solution:

The vector \[\vec{a}+\lambda \vec{b}\] is given that it is perpendicular to the vector \[\vec{c}\].

The given values of the vectors \[\vec{a},\vec{b},\vec{c}\] are \[2\hat{i}+2\hat{j}+3\hat{k}\] , \[-\hat{i}+2\hat{j}+\hat{k}\], \[3\hat{i}+\hat{j}\]respectively.

By substituting the value of vector \[\vec{a},\vec{b}\] in \[\vec{a}+\lambda \vec{b}\] we get,

\[\vec{a}+\lambda \vec{b}=2\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( -\hat{i}+2\hat{j}+\hat{k} \right)\]

\[=\left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k}\]

We know that a dot product of \[\vec{a},\vec{b}\]is given the formula \[\vec{a}.\vec{b}=\left\| {\vec{a}} \right\|\left\| {\vec{b}} \right\|\cos \theta \]

Where \[\theta ,\left\| {} \right\|\] represent the angle between the given vectors and the magnitude of the vector respectively.

Now we know that when \[\theta ={{90}^{0}}\], \[\cos \left( {{90}^{0}} \right)=0\] thus the dot product of perpendicular vectors is 0.

Thus, the product of the vectors \[\vec{a}+\lambda \vec{b}\] and \[\vec{c}\]is equal to 0.

\[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=\left( \left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k} \right).\left( 3\hat{i}+\hat{j} \right)\]

\[=\left( 3\left( 2-\lambda \right)\hat{i}.\hat{i}+3\left( 2+2\lambda \right)\hat{j}.\hat{i}+3\left( 3+\lambda \right)\hat{k}.\hat{i} \right)+\left( \left( 2-\lambda \right)\hat{i}.\hat{j}+\left( 2+2\lambda \right)\hat{j}.\hat{j}+\left( 3+\lambda \right)\hat{k}.\hat{j} \right)\] ….. (1)

We know that the dot product of the orthogonal vectors \[\hat{i},\hat{j},\hat{k}\] is given by the following values.

\[\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{i}.\hat{k}=0\] and \[\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1\]

By substituting the values in equation (1) and equating it the value of 0 since \[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=0\]we get,

\[\left( 3\left( 2-\lambda \right)\times 1+3\left( 2+2\lambda \right)\times 0+3\left( 3+\lambda \right)\times 0 \right)+\left( \left( 2-\lambda \right)\times 0+\left( 2+2\lambda \right)\times 1+\left( 3+\lambda \right)\times 0 \right)=0\]

\[3\left( 2-\lambda \right)+\left( 2+2\lambda \right)=0\]

\[6-3\lambda +2+2\lambda =0\]

\[8-\lambda =0\]

\[\lambda =8\]

Thus, for the given condition \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\], the value of \[\lambda \]is equal to 8.

Note: The possibility of mistake can be not able to analyse that dot product can be used for solving the given problem. The other possibility of mistake is doing simple multiplication using a vector product, the dot product of vectors is different from normal scalar multiplication. The alternative way of solving the question can be applying the properties of cross product of vectors. The cross product of perpendicular vectors is equal to 1 and the cross-product property is \[\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0\].

Complete step-by-step Solution:

The vector \[\vec{a}+\lambda \vec{b}\] is given that it is perpendicular to the vector \[\vec{c}\].

The given values of the vectors \[\vec{a},\vec{b},\vec{c}\] are \[2\hat{i}+2\hat{j}+3\hat{k}\] , \[-\hat{i}+2\hat{j}+\hat{k}\], \[3\hat{i}+\hat{j}\]respectively.

By substituting the value of vector \[\vec{a},\vec{b}\] in \[\vec{a}+\lambda \vec{b}\] we get,

\[\vec{a}+\lambda \vec{b}=2\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( -\hat{i}+2\hat{j}+\hat{k} \right)\]

\[=\left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k}\]

We know that a dot product of \[\vec{a},\vec{b}\]is given the formula \[\vec{a}.\vec{b}=\left\| {\vec{a}} \right\|\left\| {\vec{b}} \right\|\cos \theta \]

Where \[\theta ,\left\| {} \right\|\] represent the angle between the given vectors and the magnitude of the vector respectively.

Now we know that when \[\theta ={{90}^{0}}\], \[\cos \left( {{90}^{0}} \right)=0\] thus the dot product of perpendicular vectors is 0.

Thus, the product of the vectors \[\vec{a}+\lambda \vec{b}\] and \[\vec{c}\]is equal to 0.

\[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=\left( \left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k} \right).\left( 3\hat{i}+\hat{j} \right)\]

\[=\left( 3\left( 2-\lambda \right)\hat{i}.\hat{i}+3\left( 2+2\lambda \right)\hat{j}.\hat{i}+3\left( 3+\lambda \right)\hat{k}.\hat{i} \right)+\left( \left( 2-\lambda \right)\hat{i}.\hat{j}+\left( 2+2\lambda \right)\hat{j}.\hat{j}+\left( 3+\lambda \right)\hat{k}.\hat{j} \right)\] ….. (1)

We know that the dot product of the orthogonal vectors \[\hat{i},\hat{j},\hat{k}\] is given by the following values.

\[\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{i}.\hat{k}=0\] and \[\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1\]

By substituting the values in equation (1) and equating it the value of 0 since \[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=0\]we get,

\[\left( 3\left( 2-\lambda \right)\times 1+3\left( 2+2\lambda \right)\times 0+3\left( 3+\lambda \right)\times 0 \right)+\left( \left( 2-\lambda \right)\times 0+\left( 2+2\lambda \right)\times 1+\left( 3+\lambda \right)\times 0 \right)=0\]

\[3\left( 2-\lambda \right)+\left( 2+2\lambda \right)=0\]

\[6-3\lambda +2+2\lambda =0\]

\[8-\lambda =0\]

\[\lambda =8\]

Thus, for the given condition \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\], the value of \[\lambda \]is equal to 8.

Note: The possibility of mistake can be not able to analyse that dot product can be used for solving the given problem. The other possibility of mistake is doing simple multiplication using a vector product, the dot product of vectors is different from normal scalar multiplication. The alternative way of solving the question can be applying the properties of cross product of vectors. The cross product of perpendicular vectors is equal to 1 and the cross-product property is \[\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0\].

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Select the word that is correctly spelled a Twelveth class 10 english CBSE