If \[\vec{a}=2\hat{i}+2\hat{j}+3\hat{k},\vec{b}=-\hat{i}+2\hat{j}+\hat{k}\]and \[\vec{c}=3\hat{i}+\hat{j}\] such that \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\] then find the value of \[\lambda \].
Answer
381.9k+ views
Hint: To solve the question, we have to apply the properties of the dot product of vectors to calculate the value of \[\lambda \].
Complete step-by-step Solution:
The vector \[\vec{a}+\lambda \vec{b}\] is given that it is perpendicular to the vector \[\vec{c}\].
The given values of the vectors \[\vec{a},\vec{b},\vec{c}\] are \[2\hat{i}+2\hat{j}+3\hat{k}\] , \[-\hat{i}+2\hat{j}+\hat{k}\], \[3\hat{i}+\hat{j}\]respectively.
By substituting the value of vector \[\vec{a},\vec{b}\] in \[\vec{a}+\lambda \vec{b}\] we get,
\[\vec{a}+\lambda \vec{b}=2\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( -\hat{i}+2\hat{j}+\hat{k} \right)\]
\[=\left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k}\]
We know that a dot product of \[\vec{a},\vec{b}\]is given the formula \[\vec{a}.\vec{b}=\left\| {\vec{a}} \right\|\left\| {\vec{b}} \right\|\cos \theta \]
Where \[\theta ,\left\| {} \right\|\] represent the angle between the given vectors and the magnitude of the vector respectively.
Now we know that when \[\theta ={{90}^{0}}\], \[\cos \left( {{90}^{0}} \right)=0\] thus the dot product of perpendicular vectors is 0.
Thus, the product of the vectors \[\vec{a}+\lambda \vec{b}\] and \[\vec{c}\]is equal to 0.
\[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=\left( \left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k} \right).\left( 3\hat{i}+\hat{j} \right)\]
\[=\left( 3\left( 2-\lambda \right)\hat{i}.\hat{i}+3\left( 2+2\lambda \right)\hat{j}.\hat{i}+3\left( 3+\lambda \right)\hat{k}.\hat{i} \right)+\left( \left( 2-\lambda \right)\hat{i}.\hat{j}+\left( 2+2\lambda \right)\hat{j}.\hat{j}+\left( 3+\lambda \right)\hat{k}.\hat{j} \right)\] ….. (1)
We know that the dot product of the orthogonal vectors \[\hat{i},\hat{j},\hat{k}\] is given by the following values.
\[\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{i}.\hat{k}=0\] and \[\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1\]
By substituting the values in equation (1) and equating it the value of 0 since \[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=0\]we get,
\[\left( 3\left( 2-\lambda \right)\times 1+3\left( 2+2\lambda \right)\times 0+3\left( 3+\lambda \right)\times 0 \right)+\left( \left( 2-\lambda \right)\times 0+\left( 2+2\lambda \right)\times 1+\left( 3+\lambda \right)\times 0 \right)=0\]
\[3\left( 2-\lambda \right)+\left( 2+2\lambda \right)=0\]
\[6-3\lambda +2+2\lambda =0\]
\[8-\lambda =0\]
\[\lambda =8\]
Thus, for the given condition \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\], the value of \[\lambda \]is equal to 8.
Note: The possibility of mistake can be not able to analyse that dot product can be used for solving the given problem. The other possibility of mistake is doing simple multiplication using a vector product, the dot product of vectors is different from normal scalar multiplication. The alternative way of solving the question can be applying the properties of cross product of vectors. The cross product of perpendicular vectors is equal to 1 and the cross-product property is \[\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0\].
Complete step-by-step Solution:
The vector \[\vec{a}+\lambda \vec{b}\] is given that it is perpendicular to the vector \[\vec{c}\].
The given values of the vectors \[\vec{a},\vec{b},\vec{c}\] are \[2\hat{i}+2\hat{j}+3\hat{k}\] , \[-\hat{i}+2\hat{j}+\hat{k}\], \[3\hat{i}+\hat{j}\]respectively.
By substituting the value of vector \[\vec{a},\vec{b}\] in \[\vec{a}+\lambda \vec{b}\] we get,
\[\vec{a}+\lambda \vec{b}=2\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( -\hat{i}+2\hat{j}+\hat{k} \right)\]
\[=\left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k}\]
We know that a dot product of \[\vec{a},\vec{b}\]is given the formula \[\vec{a}.\vec{b}=\left\| {\vec{a}} \right\|\left\| {\vec{b}} \right\|\cos \theta \]
Where \[\theta ,\left\| {} \right\|\] represent the angle between the given vectors and the magnitude of the vector respectively.
Now we know that when \[\theta ={{90}^{0}}\], \[\cos \left( {{90}^{0}} \right)=0\] thus the dot product of perpendicular vectors is 0.
Thus, the product of the vectors \[\vec{a}+\lambda \vec{b}\] and \[\vec{c}\]is equal to 0.
\[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=\left( \left( 2-\lambda \right)\hat{i}+\left( 2+2\lambda \right)\hat{j}+\left( 3+\lambda \right)\hat{k} \right).\left( 3\hat{i}+\hat{j} \right)\]
\[=\left( 3\left( 2-\lambda \right)\hat{i}.\hat{i}+3\left( 2+2\lambda \right)\hat{j}.\hat{i}+3\left( 3+\lambda \right)\hat{k}.\hat{i} \right)+\left( \left( 2-\lambda \right)\hat{i}.\hat{j}+\left( 2+2\lambda \right)\hat{j}.\hat{j}+\left( 3+\lambda \right)\hat{k}.\hat{j} \right)\] ….. (1)
We know that the dot product of the orthogonal vectors \[\hat{i},\hat{j},\hat{k}\] is given by the following values.
\[\hat{i}.\hat{j}=\hat{j}.\hat{k}=\hat{i}.\hat{k}=0\] and \[\hat{i}.\hat{i}=\hat{j}.\hat{j}=\hat{k}.\hat{k}=1\]
By substituting the values in equation (1) and equating it the value of 0 since \[\left( \vec{a}+\lambda \vec{b} \right).\vec{c}=0\]we get,
\[\left( 3\left( 2-\lambda \right)\times 1+3\left( 2+2\lambda \right)\times 0+3\left( 3+\lambda \right)\times 0 \right)+\left( \left( 2-\lambda \right)\times 0+\left( 2+2\lambda \right)\times 1+\left( 3+\lambda \right)\times 0 \right)=0\]
\[3\left( 2-\lambda \right)+\left( 2+2\lambda \right)=0\]
\[6-3\lambda +2+2\lambda =0\]
\[8-\lambda =0\]
\[\lambda =8\]
Thus, for the given condition \[\vec{a}+\lambda \vec{b}\] is perpendicular to the vector \[\vec{c}\], the value of \[\lambda \]is equal to 8.
Note: The possibility of mistake can be not able to analyse that dot product can be used for solving the given problem. The other possibility of mistake is doing simple multiplication using a vector product, the dot product of vectors is different from normal scalar multiplication. The alternative way of solving the question can be applying the properties of cross product of vectors. The cross product of perpendicular vectors is equal to 1 and the cross-product property is \[\hat{i}\times \hat{i}=\hat{j}\times \hat{j}=\hat{k}\times \hat{k}=0\].
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which one of the following places is unlikely to be class 8 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Elucidate the structure of fructose class 12 chemistry CBSE

What is pollution? How many types of pollution? Define it
