
If $\vec{a}$ and $\vec{b}$ are two vectors then which of the following options is true
\[\begin{align}
& a)|\vec{a}.\vec{b}|>|\vec{a}||\vec{b}| \\
& b)|\vec{a}.\vec{b}|<|\vec{a}||\vec{b}| \\
& c)|\vec{a}.\vec{b}|\ge |\vec{a}||\vec{b}| \\
& d)|\vec{a}.\vec{b}|\le |\vec{a}||\vec{b}| \\
\end{align}\]
Answer
575.4k+ views
Hint: We know that $\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $ . Hence we can take modulus on both side and find $|\vec{a}.\vec{b}|=||\vec{a}||\vec{b}|\cos \theta |$. Now we will use the property that $|a.b|=|a|.|b|$. Now we also know that the range of $\cos \theta $ is from -1 to 1. Hence taking mod we can find that $|\cos \theta |\le 1$ . Hence we get relation between $|\vec{a}.\vec{b}|$ and $|\vec{a}|.|\vec{b}|$
Complete step by step answer:
Now consider $\vec{a}$ and $\vec{b}$ are two vectors.
Now we will take $\vec{a}.\vec{b}$ that is nothing but dot product or scalar product of the vectors.
We know that $\vec{a}.\vec{b}$ is given by $|\vec{a}|.|\vec{b}|.\cos \theta $
Note that the value on RHS is a scalar and not a vector
Hence now we have $\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|\cos \theta $
Now taking modulus on both side we get $|\vec{a}.\vec{b}|=||\vec{a}|.|\vec{b}|.\cos \theta |$
Now we now that for any scalars a and b we get $|a.b|=|a||b|$.
Now the values $|\vec{a}|,|\vec{b}|,\cos \theta $ are all scalar quantities
Hence using the above result we get
$|\vec{a}.\vec{b}|=||\vec{a}||.||\vec{b}||.|\cos \theta |$
Now we know that $|\vec{a}|$ is a scalar which is non negative since modulus is nothing but distance and distance is never negative and for any positive scalar we know that $|a|=a$hence we have $||\vec{a}||=|\vec{a}|$.
Similarly $|\vec{b}|$ is a scalar which is non negative since modulus is nothing but distance and distance is never negative and for any positive scalar we know that $|a|=a$hence we have $||\vec{b}||=|\vec{b}|$
Hence, we get
$|\vec{a}.\vec{b}|=|\vec{a}|.|\vec{b}|.|\cos \theta |................(1)$
Now we know that the range of $\cos \theta $ is from -1 to 1.
Hence we get $-1\le \cos \theta \le 1$
Taking modulus we get \[0\le |\cos \theta |\le 1\]
Now multiplying the equation with $|\vec{a}|.|\vec{b}|$ we get
$0\le |\vec{a}|.|\vec{b}||\cos \theta |\le |\vec{a}|.|\vec{b}|...........(2)$
Now from equation (1) and equation (2) we get
$|\vec{a}.\vec{b}|\le |\vec{a}||\vec{b}|$
So, the correct answer is “Option D”.
Note: Now dot product of two vectors is defined as \[\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|\cos \theta \] and magnitude of cross product of vector is $|\vec{a}\times \vec{b}|=|\vec{a}|.|\vec{b}|\sin \theta $ , not to be confused among the two.
Complete step by step answer:
Now consider $\vec{a}$ and $\vec{b}$ are two vectors.
Now we will take $\vec{a}.\vec{b}$ that is nothing but dot product or scalar product of the vectors.
We know that $\vec{a}.\vec{b}$ is given by $|\vec{a}|.|\vec{b}|.\cos \theta $
Note that the value on RHS is a scalar and not a vector
Hence now we have $\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|\cos \theta $
Now taking modulus on both side we get $|\vec{a}.\vec{b}|=||\vec{a}|.|\vec{b}|.\cos \theta |$
Now we now that for any scalars a and b we get $|a.b|=|a||b|$.
Now the values $|\vec{a}|,|\vec{b}|,\cos \theta $ are all scalar quantities
Hence using the above result we get
$|\vec{a}.\vec{b}|=||\vec{a}||.||\vec{b}||.|\cos \theta |$
Now we know that $|\vec{a}|$ is a scalar which is non negative since modulus is nothing but distance and distance is never negative and for any positive scalar we know that $|a|=a$hence we have $||\vec{a}||=|\vec{a}|$.
Similarly $|\vec{b}|$ is a scalar which is non negative since modulus is nothing but distance and distance is never negative and for any positive scalar we know that $|a|=a$hence we have $||\vec{b}||=|\vec{b}|$
Hence, we get
$|\vec{a}.\vec{b}|=|\vec{a}|.|\vec{b}|.|\cos \theta |................(1)$
Now we know that the range of $\cos \theta $ is from -1 to 1.
Hence we get $-1\le \cos \theta \le 1$
Taking modulus we get \[0\le |\cos \theta |\le 1\]
Now multiplying the equation with $|\vec{a}|.|\vec{b}|$ we get
$0\le |\vec{a}|.|\vec{b}||\cos \theta |\le |\vec{a}|.|\vec{b}|...........(2)$
Now from equation (1) and equation (2) we get
$|\vec{a}.\vec{b}|\le |\vec{a}||\vec{b}|$
So, the correct answer is “Option D”.
Note: Now dot product of two vectors is defined as \[\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|\cos \theta \] and magnitude of cross product of vector is $|\vec{a}\times \vec{b}|=|\vec{a}|.|\vec{b}|\sin \theta $ , not to be confused among the two.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

