If \[\vec a,\,\vec b,\,\vec c\] are three non-coplanar non-zero vectors and \[\vec r\] is any vector in space, then\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\] is equal to
A.\[2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
B.\[3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
C.\[\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
D.\[4\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
Answer
Verified
460.5k+ views
Hint: Here we will apply the identity of the cross multiplication of the vectors to expand the given equation in terms of the matrices of the given vectors. Then we will simplify that equation to get the required answer.
Complete step-by-step answer:
Given equation is \[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\]………………..\[\left( 1 \right)\]
We will use the identity of the vectors, \[\vec a \times \left( {\vec b \times \vec c} \right) = \left( {\vec a\, \cdot \vec c} \right)\vec b - \left( {\vec a\, \cdot \vec b} \right)\vec c\] to simplify this equation..
So, firstly we will take the first term from the equation \[\left( 1 \right)\] i.e. \[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right)\] and we will apply the identity on it.
Therefore, we get
\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) = \left( {\left( {\vec a \times \vec b} \right)\vec c} \right)\vec r - \left( {\left( {\vec a \times \vec b} \right)\vec r} \right)\vec c\]
We know that \[\left( {\vec a \times \vec b} \right)\vec c\]can be written in terms of the matrix form as\[\left[ {\vec a\,\vec b\,\vec c} \right]\]i.e. \[\left( {\vec a \times \vec b} \right)\vec c = \left[ {\vec a\,\vec b\,\vec c} \right]\]. Therefore, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) = \left( {\left( {\vec a \times \vec b} \right)\vec c} \right)\vec r - \left( {\left( {\vec a \times \vec b} \right)\vec r} \right)\vec c = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c\]
Similarly, we will find this for the second terms of the equation \[1\] i.e. \[\left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right)\].
\[\left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) = \left( {\left( {\vec b \times \vec c} \right)\vec a} \right)\vec r - \left( {\left( {\vec b \times \vec c} \right)\vec r} \right)\vec a = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a\]
Again, we will find this for the third terms of the equation \[1\] i.e. \[\left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\].
\[\left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = \left( {\left( {\vec c \times \vec a} \right)\vec b} \right)\vec r - \left( {\left( {\vec c \times \vec a} \right)\vec r} \right)\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b\]
Now we will find the sum of all the terms of the equation \[\left( 1 \right)\]. Therefore, we get
\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c} \right) + \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a} \right) + \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b} \right)\]
Now by solving this, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b\]
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left( {\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b} \right)\]
We know that the value of \[\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r\].
Substituting \[\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r\] in the above equation, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec c} \right]\vec r = 2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
Hence, \[2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\] is the value of the given equation.
So, option A is the correct option.
Note: Vector is the geometric object that has both the magnitude and the direction of an object. So while calculating the equation of a line vector we should know that it is equal to the difference between the final point vector and the starting point vector of that line. Vectors have three components i.e. \[x\] component, \[y\] component and \[z\] component and all the three components of the vectors are perpendicular to each other. Unit vector is a vector which has a magnitude of 1 unit and zero vector is a vector which has a magnitude of 0 unit.
Complete step-by-step answer:
Given equation is \[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\]………………..\[\left( 1 \right)\]
We will use the identity of the vectors, \[\vec a \times \left( {\vec b \times \vec c} \right) = \left( {\vec a\, \cdot \vec c} \right)\vec b - \left( {\vec a\, \cdot \vec b} \right)\vec c\] to simplify this equation..
So, firstly we will take the first term from the equation \[\left( 1 \right)\] i.e. \[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right)\] and we will apply the identity on it.
Therefore, we get
\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) = \left( {\left( {\vec a \times \vec b} \right)\vec c} \right)\vec r - \left( {\left( {\vec a \times \vec b} \right)\vec r} \right)\vec c\]
We know that \[\left( {\vec a \times \vec b} \right)\vec c\]can be written in terms of the matrix form as\[\left[ {\vec a\,\vec b\,\vec c} \right]\]i.e. \[\left( {\vec a \times \vec b} \right)\vec c = \left[ {\vec a\,\vec b\,\vec c} \right]\]. Therefore, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) = \left( {\left( {\vec a \times \vec b} \right)\vec c} \right)\vec r - \left( {\left( {\vec a \times \vec b} \right)\vec r} \right)\vec c = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c\]
Similarly, we will find this for the second terms of the equation \[1\] i.e. \[\left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right)\].
\[\left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) = \left( {\left( {\vec b \times \vec c} \right)\vec a} \right)\vec r - \left( {\left( {\vec b \times \vec c} \right)\vec r} \right)\vec a = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a\]
Again, we will find this for the third terms of the equation \[1\] i.e. \[\left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right)\].
\[\left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = \left( {\left( {\vec c \times \vec a} \right)\vec b} \right)\vec r - \left( {\left( {\vec c \times \vec a} \right)\vec r} \right)\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b\]
Now we will find the sum of all the terms of the equation \[\left( 1 \right)\]. Therefore, we get
\[\left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c} \right) + \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a} \right) + \left( {\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b} \right)\]
Now by solving this, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec r} \right]\vec c - \left[ {\,\vec b\vec c\,\vec r} \right]\vec a - \left[ {\,\vec a\vec c\,\vec r} \right]\vec b\]
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left( {\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b} \right)\]
We know that the value of \[\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r\].
Substituting \[\left[ {\vec a\,\vec b\,\vec r} \right]\vec c + \left[ {\,\vec b\vec c\,\vec r} \right]\vec a + \left[ {\,\vec a\vec c\,\vec r} \right]\vec b = \left[ {\vec a\,\vec b\,\vec c} \right]\vec r\] in the above equation, we get
\[ \Rightarrow \left( {\vec a \times \vec b} \right) \times \left( {\vec r \times \vec c} \right) + \left( {\vec b \times \vec c} \right) \times \left( {\vec r \times \vec a} \right) + \left( {\vec c \times \vec a} \right) \times \left( {\vec r \times \vec b} \right) = 3\left[ {\vec a\,\vec b\,\vec c} \right]\vec r - \left[ {\vec a\,\vec b\,\vec c} \right]\vec r = 2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\]
Hence, \[2\left[ {\vec a\,\vec b\,\vec c} \right]\vec r\] is the value of the given equation.
So, option A is the correct option.
Note: Vector is the geometric object that has both the magnitude and the direction of an object. So while calculating the equation of a line vector we should know that it is equal to the difference between the final point vector and the starting point vector of that line. Vectors have three components i.e. \[x\] component, \[y\] component and \[z\] component and all the three components of the vectors are perpendicular to each other. Unit vector is a vector which has a magnitude of 1 unit and zero vector is a vector which has a magnitude of 0 unit.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE