
If trigonometric ratios $\sec \alpha $ and $\cos ec\alpha $ are the roots of the equation ${{x}^{2}}-px+q=0$ then
$\begin{align}
& \text{A}\text{. }{{\text{p}}^{2}}+{{q}^{2}}=2q \\
& \text{B}\text{. }{{\text{p}}^{2}}-{{q}^{2}}=2q \\
& \text{C}\text{. }{{\text{p}}^{2}}+{{q}^{2}}=2p \\
& \text{D}\text{. }{{\text{p}}^{2}}-{{q}^{2}}=2p \\
\end{align}$
Answer
579k+ views
Hint: We have given $\sec \alpha $ and $\cos ec\alpha $ are the roots of the equation ${{x}^{2}}-px+q=0$. We have to find the relation between the roots.
Now, we know that if $\alpha \text{ and }\beta $ are the roots of the equation $a{{x}^{2}}+bx+c=0$ then, the relation between the roots of the quadratic equation is given by
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Complete step-by-step solution:
We have given equation ${{x}^{2}}-px+q=0$ is a quadratic equation and $\sec \alpha $ and $\cos ec\alpha $ are roots of the equation.
So, the relation between $\sec \alpha $ and $\cos ec\alpha $will be
Sum of roots
$\begin{align}
& \sec \alpha +\cos ec\alpha =\dfrac{-\left( -p \right)}{1} \\
& \sec \alpha +\cos ec\alpha =p..............(i) \\
\end{align}$
Now, product of roots will be
\[\begin{align}
& \sec \alpha .\cos ec\alpha =\dfrac{q}{1} \\
& \sec \alpha .\cos ec\alpha =q \\
\end{align}\]
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
So, \[\begin{align}
& \dfrac{1}{\cos \alpha }.\dfrac{1}{\sin \alpha }=q \\
& \Rightarrow \cos \alpha .\sin \alpha =\dfrac{1}{q}................(ii) \\
\end{align}\]
Now, again consider equation (i)
$\sec \alpha +\cos ec\alpha =p$
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
Now, substitute the values in equation (i), we get
$\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }\text{= p }$
Now, solve further
$\begin{align}
& \Rightarrow \dfrac{\sin \alpha +\cos \alpha }{\cos \alpha .\sin \alpha }\text{=p} \\
& \Rightarrow \sin \alpha +\cos \alpha =p\cos \alpha .\sin \alpha \\
\end{align}$
Now, substitute the value from equation (ii), we get
$\Rightarrow \sin \alpha +\cos \alpha =\dfrac{p}{q}.............(iii)$
Now, we know that ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $is derived from the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Here, $a=\sin \alpha $ and $b=\cos \alpha $ .
So, ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +2\sin \alpha .\cos \alpha $
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, so we get ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
Now, substituting the values from equation (i),(ii) and (iii), we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{p}{q} \right)}^{2}}=1+2\times \dfrac{1}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=1+\dfrac{2}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=\dfrac{q+2}{q} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{q}^{2}}\left( q+2 \right)}{q} \\
& \Rightarrow {{p}^{2}}=q\left( q+2 \right) \\
& \Rightarrow {{p}^{2}}={{q}^{2}}+2q \\
& \Rightarrow {{p}^{2}}-{{q}^{2}}=2q \\
\end{align}$
Option B is the correct answer.
Note: In this question, we use the trigonometric identities. To solve this question we use the relation between the roots of the given quadratic equation because options are given like the relation between roots. Alternatively we can use the quadratic formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ but these will lead to lengthy solutions.
Now, we know that if $\alpha \text{ and }\beta $ are the roots of the equation $a{{x}^{2}}+bx+c=0$ then, the relation between the roots of the quadratic equation is given by
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Complete step-by-step solution:
We have given equation ${{x}^{2}}-px+q=0$ is a quadratic equation and $\sec \alpha $ and $\cos ec\alpha $ are roots of the equation.
So, the relation between $\sec \alpha $ and $\cos ec\alpha $will be
Sum of roots
$\begin{align}
& \sec \alpha +\cos ec\alpha =\dfrac{-\left( -p \right)}{1} \\
& \sec \alpha +\cos ec\alpha =p..............(i) \\
\end{align}$
Now, product of roots will be
\[\begin{align}
& \sec \alpha .\cos ec\alpha =\dfrac{q}{1} \\
& \sec \alpha .\cos ec\alpha =q \\
\end{align}\]
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
So, \[\begin{align}
& \dfrac{1}{\cos \alpha }.\dfrac{1}{\sin \alpha }=q \\
& \Rightarrow \cos \alpha .\sin \alpha =\dfrac{1}{q}................(ii) \\
\end{align}\]
Now, again consider equation (i)
$\sec \alpha +\cos ec\alpha =p$
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
Now, substitute the values in equation (i), we get
$\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }\text{= p }$
Now, solve further
$\begin{align}
& \Rightarrow \dfrac{\sin \alpha +\cos \alpha }{\cos \alpha .\sin \alpha }\text{=p} \\
& \Rightarrow \sin \alpha +\cos \alpha =p\cos \alpha .\sin \alpha \\
\end{align}$
Now, substitute the value from equation (ii), we get
$\Rightarrow \sin \alpha +\cos \alpha =\dfrac{p}{q}.............(iii)$
Now, we know that ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $is derived from the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Here, $a=\sin \alpha $ and $b=\cos \alpha $ .
So, ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +2\sin \alpha .\cos \alpha $
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, so we get ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
Now, substituting the values from equation (i),(ii) and (iii), we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{p}{q} \right)}^{2}}=1+2\times \dfrac{1}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=1+\dfrac{2}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=\dfrac{q+2}{q} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{q}^{2}}\left( q+2 \right)}{q} \\
& \Rightarrow {{p}^{2}}=q\left( q+2 \right) \\
& \Rightarrow {{p}^{2}}={{q}^{2}}+2q \\
& \Rightarrow {{p}^{2}}-{{q}^{2}}=2q \\
\end{align}$
Option B is the correct answer.
Note: In this question, we use the trigonometric identities. To solve this question we use the relation between the roots of the given quadratic equation because options are given like the relation between roots. Alternatively we can use the quadratic formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ but these will lead to lengthy solutions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

