
If trigonometric ratios $\sec \alpha $ and $\cos ec\alpha $ are the roots of the equation ${{x}^{2}}-px+q=0$ then
$\begin{align}
& \text{A}\text{. }{{\text{p}}^{2}}+{{q}^{2}}=2q \\
& \text{B}\text{. }{{\text{p}}^{2}}-{{q}^{2}}=2q \\
& \text{C}\text{. }{{\text{p}}^{2}}+{{q}^{2}}=2p \\
& \text{D}\text{. }{{\text{p}}^{2}}-{{q}^{2}}=2p \\
\end{align}$
Answer
592.2k+ views
Hint: We have given $\sec \alpha $ and $\cos ec\alpha $ are the roots of the equation ${{x}^{2}}-px+q=0$. We have to find the relation between the roots.
Now, we know that if $\alpha \text{ and }\beta $ are the roots of the equation $a{{x}^{2}}+bx+c=0$ then, the relation between the roots of the quadratic equation is given by
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Complete step-by-step solution:
We have given equation ${{x}^{2}}-px+q=0$ is a quadratic equation and $\sec \alpha $ and $\cos ec\alpha $ are roots of the equation.
So, the relation between $\sec \alpha $ and $\cos ec\alpha $will be
Sum of roots
$\begin{align}
& \sec \alpha +\cos ec\alpha =\dfrac{-\left( -p \right)}{1} \\
& \sec \alpha +\cos ec\alpha =p..............(i) \\
\end{align}$
Now, product of roots will be
\[\begin{align}
& \sec \alpha .\cos ec\alpha =\dfrac{q}{1} \\
& \sec \alpha .\cos ec\alpha =q \\
\end{align}\]
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
So, \[\begin{align}
& \dfrac{1}{\cos \alpha }.\dfrac{1}{\sin \alpha }=q \\
& \Rightarrow \cos \alpha .\sin \alpha =\dfrac{1}{q}................(ii) \\
\end{align}\]
Now, again consider equation (i)
$\sec \alpha +\cos ec\alpha =p$
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
Now, substitute the values in equation (i), we get
$\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }\text{= p }$
Now, solve further
$\begin{align}
& \Rightarrow \dfrac{\sin \alpha +\cos \alpha }{\cos \alpha .\sin \alpha }\text{=p} \\
& \Rightarrow \sin \alpha +\cos \alpha =p\cos \alpha .\sin \alpha \\
\end{align}$
Now, substitute the value from equation (ii), we get
$\Rightarrow \sin \alpha +\cos \alpha =\dfrac{p}{q}.............(iii)$
Now, we know that ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $is derived from the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Here, $a=\sin \alpha $ and $b=\cos \alpha $ .
So, ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +2\sin \alpha .\cos \alpha $
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, so we get ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
Now, substituting the values from equation (i),(ii) and (iii), we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{p}{q} \right)}^{2}}=1+2\times \dfrac{1}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=1+\dfrac{2}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=\dfrac{q+2}{q} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{q}^{2}}\left( q+2 \right)}{q} \\
& \Rightarrow {{p}^{2}}=q\left( q+2 \right) \\
& \Rightarrow {{p}^{2}}={{q}^{2}}+2q \\
& \Rightarrow {{p}^{2}}-{{q}^{2}}=2q \\
\end{align}$
Option B is the correct answer.
Note: In this question, we use the trigonometric identities. To solve this question we use the relation between the roots of the given quadratic equation because options are given like the relation between roots. Alternatively we can use the quadratic formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ but these will lead to lengthy solutions.
Now, we know that if $\alpha \text{ and }\beta $ are the roots of the equation $a{{x}^{2}}+bx+c=0$ then, the relation between the roots of the quadratic equation is given by
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Complete step-by-step solution:
We have given equation ${{x}^{2}}-px+q=0$ is a quadratic equation and $\sec \alpha $ and $\cos ec\alpha $ are roots of the equation.
So, the relation between $\sec \alpha $ and $\cos ec\alpha $will be
Sum of roots
$\begin{align}
& \sec \alpha +\cos ec\alpha =\dfrac{-\left( -p \right)}{1} \\
& \sec \alpha +\cos ec\alpha =p..............(i) \\
\end{align}$
Now, product of roots will be
\[\begin{align}
& \sec \alpha .\cos ec\alpha =\dfrac{q}{1} \\
& \sec \alpha .\cos ec\alpha =q \\
\end{align}\]
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
So, \[\begin{align}
& \dfrac{1}{\cos \alpha }.\dfrac{1}{\sin \alpha }=q \\
& \Rightarrow \cos \alpha .\sin \alpha =\dfrac{1}{q}................(ii) \\
\end{align}\]
Now, again consider equation (i)
$\sec \alpha +\cos ec\alpha =p$
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
Now, substitute the values in equation (i), we get
$\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }\text{= p }$
Now, solve further
$\begin{align}
& \Rightarrow \dfrac{\sin \alpha +\cos \alpha }{\cos \alpha .\sin \alpha }\text{=p} \\
& \Rightarrow \sin \alpha +\cos \alpha =p\cos \alpha .\sin \alpha \\
\end{align}$
Now, substitute the value from equation (ii), we get
$\Rightarrow \sin \alpha +\cos \alpha =\dfrac{p}{q}.............(iii)$
Now, we know that ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $is derived from the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Here, $a=\sin \alpha $ and $b=\cos \alpha $ .
So, ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +2\sin \alpha .\cos \alpha $
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, so we get ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
Now, substituting the values from equation (i),(ii) and (iii), we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{p}{q} \right)}^{2}}=1+2\times \dfrac{1}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=1+\dfrac{2}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=\dfrac{q+2}{q} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{q}^{2}}\left( q+2 \right)}{q} \\
& \Rightarrow {{p}^{2}}=q\left( q+2 \right) \\
& \Rightarrow {{p}^{2}}={{q}^{2}}+2q \\
& \Rightarrow {{p}^{2}}-{{q}^{2}}=2q \\
\end{align}$
Option B is the correct answer.
Note: In this question, we use the trigonometric identities. To solve this question we use the relation between the roots of the given quadratic equation because options are given like the relation between roots. Alternatively we can use the quadratic formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ but these will lead to lengthy solutions.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

