
If trigonometric ratios $\sec \alpha $ and $\cos ec\alpha $ are the roots of the equation ${{x}^{2}}-px+q=0$ then
$\begin{align}
& \text{A}\text{. }{{\text{p}}^{2}}+{{q}^{2}}=2q \\
& \text{B}\text{. }{{\text{p}}^{2}}-{{q}^{2}}=2q \\
& \text{C}\text{. }{{\text{p}}^{2}}+{{q}^{2}}=2p \\
& \text{D}\text{. }{{\text{p}}^{2}}-{{q}^{2}}=2p \\
\end{align}$
Answer
511.5k+ views
Hint: We have given $\sec \alpha $ and $\cos ec\alpha $ are the roots of the equation ${{x}^{2}}-px+q=0$. We have to find the relation between the roots.
Now, we know that if $\alpha \text{ and }\beta $ are the roots of the equation $a{{x}^{2}}+bx+c=0$ then, the relation between the roots of the quadratic equation is given by
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Complete step-by-step solution:
We have given equation ${{x}^{2}}-px+q=0$ is a quadratic equation and $\sec \alpha $ and $\cos ec\alpha $ are roots of the equation.
So, the relation between $\sec \alpha $ and $\cos ec\alpha $will be
Sum of roots
$\begin{align}
& \sec \alpha +\cos ec\alpha =\dfrac{-\left( -p \right)}{1} \\
& \sec \alpha +\cos ec\alpha =p..............(i) \\
\end{align}$
Now, product of roots will be
\[\begin{align}
& \sec \alpha .\cos ec\alpha =\dfrac{q}{1} \\
& \sec \alpha .\cos ec\alpha =q \\
\end{align}\]
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
So, \[\begin{align}
& \dfrac{1}{\cos \alpha }.\dfrac{1}{\sin \alpha }=q \\
& \Rightarrow \cos \alpha .\sin \alpha =\dfrac{1}{q}................(ii) \\
\end{align}\]
Now, again consider equation (i)
$\sec \alpha +\cos ec\alpha =p$
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
Now, substitute the values in equation (i), we get
$\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }\text{= p }$
Now, solve further
$\begin{align}
& \Rightarrow \dfrac{\sin \alpha +\cos \alpha }{\cos \alpha .\sin \alpha }\text{=p} \\
& \Rightarrow \sin \alpha +\cos \alpha =p\cos \alpha .\sin \alpha \\
\end{align}$
Now, substitute the value from equation (ii), we get
$\Rightarrow \sin \alpha +\cos \alpha =\dfrac{p}{q}.............(iii)$
Now, we know that ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $is derived from the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Here, $a=\sin \alpha $ and $b=\cos \alpha $ .
So, ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +2\sin \alpha .\cos \alpha $
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, so we get ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
Now, substituting the values from equation (i),(ii) and (iii), we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{p}{q} \right)}^{2}}=1+2\times \dfrac{1}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=1+\dfrac{2}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=\dfrac{q+2}{q} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{q}^{2}}\left( q+2 \right)}{q} \\
& \Rightarrow {{p}^{2}}=q\left( q+2 \right) \\
& \Rightarrow {{p}^{2}}={{q}^{2}}+2q \\
& \Rightarrow {{p}^{2}}-{{q}^{2}}=2q \\
\end{align}$
Option B is the correct answer.
Note: In this question, we use the trigonometric identities. To solve this question we use the relation between the roots of the given quadratic equation because options are given like the relation between roots. Alternatively we can use the quadratic formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ but these will lead to lengthy solutions.
Now, we know that if $\alpha \text{ and }\beta $ are the roots of the equation $a{{x}^{2}}+bx+c=0$ then, the relation between the roots of the quadratic equation is given by
$\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$
Complete step-by-step solution:
We have given equation ${{x}^{2}}-px+q=0$ is a quadratic equation and $\sec \alpha $ and $\cos ec\alpha $ are roots of the equation.
So, the relation between $\sec \alpha $ and $\cos ec\alpha $will be
Sum of roots
$\begin{align}
& \sec \alpha +\cos ec\alpha =\dfrac{-\left( -p \right)}{1} \\
& \sec \alpha +\cos ec\alpha =p..............(i) \\
\end{align}$
Now, product of roots will be
\[\begin{align}
& \sec \alpha .\cos ec\alpha =\dfrac{q}{1} \\
& \sec \alpha .\cos ec\alpha =q \\
\end{align}\]
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
So, \[\begin{align}
& \dfrac{1}{\cos \alpha }.\dfrac{1}{\sin \alpha }=q \\
& \Rightarrow \cos \alpha .\sin \alpha =\dfrac{1}{q}................(ii) \\
\end{align}\]
Now, again consider equation (i)
$\sec \alpha +\cos ec\alpha =p$
Now, we know that $\sec \alpha =\dfrac{1}{\cos \alpha }\text{ and cosec}\alpha \text{=}\dfrac{1}{\sin \alpha }\text{ }$
Now, substitute the values in equation (i), we get
$\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }\text{= p }$
Now, solve further
$\begin{align}
& \Rightarrow \dfrac{\sin \alpha +\cos \alpha }{\cos \alpha .\sin \alpha }\text{=p} \\
& \Rightarrow \sin \alpha +\cos \alpha =p\cos \alpha .\sin \alpha \\
\end{align}$
Now, substitute the value from equation (ii), we get
$\Rightarrow \sin \alpha +\cos \alpha =\dfrac{p}{q}.............(iii)$
Now, we know that ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $is derived from the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$.
Here, $a=\sin \alpha $ and $b=\cos \alpha $ .
So, ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +2\sin \alpha .\cos \alpha $
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, so we get ${{\left( \sin \alpha +\cos \alpha \right)}^{2}}=1+2\sin \alpha .\cos \alpha $
Now, substituting the values from equation (i),(ii) and (iii), we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{p}{q} \right)}^{2}}=1+2\times \dfrac{1}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=1+\dfrac{2}{q} \\
& \Rightarrow \dfrac{{{p}^{2}}}{{{q}^{^{2}}}}=\dfrac{q+2}{q} \\
& \Rightarrow {{p}^{2}}=\dfrac{{{q}^{2}}\left( q+2 \right)}{q} \\
& \Rightarrow {{p}^{2}}=q\left( q+2 \right) \\
& \Rightarrow {{p}^{2}}={{q}^{2}}+2q \\
& \Rightarrow {{p}^{2}}-{{q}^{2}}=2q \\
\end{align}$
Option B is the correct answer.
Note: In this question, we use the trigonometric identities. To solve this question we use the relation between the roots of the given quadratic equation because options are given like the relation between roots. Alternatively we can use the quadratic formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ but these will lead to lengthy solutions.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
