
If trigonometric equation is given as $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$ then $\cos (\theta - \dfrac{\pi }{4})$ is equal to
\[
A.{\text{ }} \pm \dfrac{1}{{2\sqrt 2 }} \\
B.{\text{ }} \pm \dfrac{1}{{\sqrt 2 }} \\
C.{\text{ }} \pm \sqrt 2 \\
D.{\text{ }} \pm 2\sqrt 2 \\
\]
Answer
605.7k+ views
Hint- In order to solve this question we will use the simple trigonometric identities such as $\tan ({90^0} - \theta ) = \cot \theta $ and $\cos (A - B) = \cos A\cos B + \sin A\sin B.$ So we will try to make the given term in this form to proceed further.
Complete step-by-step solution -
Given that $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$
Now, proceeding further with the given equation
$ \Rightarrow \tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$
As we know that $\left[ {\cot A = \tan (\dfrac{\pi }{2} - A)} \right]$
Using the above formula in the given equation, we get
$
\Rightarrow \tan (\pi \cos \theta ) = \tan ( \pm \dfrac{\pi }{2} - \pi \sin \theta ) \\
\Rightarrow \pi \cos \theta = \pm \dfrac{\pi }{2} - \pi \sin \theta \\
\Rightarrow \pi (\cos \theta + \sin \theta ) = \pm \dfrac{\pi }{2} \\
\Rightarrow (\cos \theta + \sin \theta ) = \pm \dfrac{1}{2} \\
$
Now, we will multiply LHS by \[\dfrac{{\sqrt 2 }}{{\sqrt 2 }}\] to from a cosine formula
$
\Rightarrow \dfrac{{\sqrt 2 }}{{\sqrt 2 }}(\cos \theta + \sin \theta ) = \pm \dfrac{1}{2} \\
\Rightarrow \sqrt 2 (\dfrac{{\cos \theta }}{{\sqrt 2 }} + \dfrac{{\sin \theta }}{{\sqrt 2 }}) = \pm \dfrac{1}{2} \\
$
Since, we know that$\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ , substituting this in the above formula
$ \Rightarrow \sqrt 2 (\cos \theta \cos \dfrac{\pi }{4} + \sin \theta \sin \dfrac{\pi }{4}) = \pm \dfrac{1}{2}$
As we know that$\left[ {\cos (A - B) = \cos A\cos B + \sin A\sin B} \right]$
$ \Rightarrow \cos (\theta - \dfrac{\pi }{4}) = \pm \dfrac{1}{{2\sqrt 2 }}$
Hence, the correct option is A
Note- In such type of questions starts solving from the complex side of the questions and tries to express every term in terms of sin and cosine or a variable which is easy to solve. To simplify these questions try to combine two terms to a single term using trigonometric formulas.
Complete step-by-step solution -
Given that $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$
Now, proceeding further with the given equation
$ \Rightarrow \tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$
As we know that $\left[ {\cot A = \tan (\dfrac{\pi }{2} - A)} \right]$
Using the above formula in the given equation, we get
$
\Rightarrow \tan (\pi \cos \theta ) = \tan ( \pm \dfrac{\pi }{2} - \pi \sin \theta ) \\
\Rightarrow \pi \cos \theta = \pm \dfrac{\pi }{2} - \pi \sin \theta \\
\Rightarrow \pi (\cos \theta + \sin \theta ) = \pm \dfrac{\pi }{2} \\
\Rightarrow (\cos \theta + \sin \theta ) = \pm \dfrac{1}{2} \\
$
Now, we will multiply LHS by \[\dfrac{{\sqrt 2 }}{{\sqrt 2 }}\] to from a cosine formula
$
\Rightarrow \dfrac{{\sqrt 2 }}{{\sqrt 2 }}(\cos \theta + \sin \theta ) = \pm \dfrac{1}{2} \\
\Rightarrow \sqrt 2 (\dfrac{{\cos \theta }}{{\sqrt 2 }} + \dfrac{{\sin \theta }}{{\sqrt 2 }}) = \pm \dfrac{1}{2} \\
$
Since, we know that$\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} = \sin \dfrac{\pi }{4}$ , substituting this in the above formula
$ \Rightarrow \sqrt 2 (\cos \theta \cos \dfrac{\pi }{4} + \sin \theta \sin \dfrac{\pi }{4}) = \pm \dfrac{1}{2}$
As we know that$\left[ {\cos (A - B) = \cos A\cos B + \sin A\sin B} \right]$
$ \Rightarrow \cos (\theta - \dfrac{\pi }{4}) = \pm \dfrac{1}{{2\sqrt 2 }}$
Hence, the correct option is A
Note- In such type of questions starts solving from the complex side of the questions and tries to express every term in terms of sin and cosine or a variable which is easy to solve. To simplify these questions try to combine two terms to a single term using trigonometric formulas.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

