Answer
Verified
421.2k+ views
Hint: We first try to form the factorisation of the given ${{T}_{r}}=\dfrac{8r}{16{{r}^{4}}-8{{r}^{2}}+1}$ and make a form of repetitive terms. The terms get cancelled out when we try to take the summation of the series from 1 onwards. The first part of a term gets cancelled out with the last part of its previous term. This way we can ignore the values at the infinite end as the value goes to 0.
Complete step by step answer:
We first try to form the given equation in its simplest form.
We have ${{T}_{r}}=\dfrac{8r}{16{{r}^{4}}-8{{r}^{2}}+1}$. We work on the denominator of the fraction.
$16{{r}^{4}}-8{{r}^{2}}+1$ can be factored into parts. So, we form the factorisation. First, we form the square.
$\begin{align}
& 16{{r}^{4}}-8{{r}^{2}}+1 \\
& ={{\left( 4{{r}^{2}} \right)}^{2}}-2\times 4{{r}^{2}}\times 1+{{1}^{2}} \\
& ={{\left( 4{{r}^{2}}-1 \right)}^{2}} \\
\end{align}$
Now we use the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
$\begin{align}
& {{\left( 4{{r}^{2}}-1 \right)}^{2}} \\
& ={{\left\{ {{\left( 2r \right)}^{2}}-{{1}^{2}} \right\}}^{2}} \\
& ={{\left\{ \left( 2r+1 \right)\left( 2r-1 \right) \right\}}^{2}} \\
& ={{\left( 2r+1 \right)}^{2}}{{\left( 2r-1 \right)}^{2}} \\
\end{align}$
We also know that ${{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab$. Putting $a=2r+1,b=2r-1$ we get
${{\left( 2r+1 \right)}^{2}}-{{\left( 2r-1 \right)}^{2}}=4\times 2r\times 1=8r$.
So, we can express 8r as ${{\left( 2r+1 \right)}^{2}}-{{\left( 2r-1 \right)}^{2}}$.
Now we change our given form of series.
${{T}_{r}}=\dfrac{8r}{16{{r}^{4}}-8{{r}^{2}}+1}$. We place the previous values and get ${{T}_{r}}=\dfrac{{{\left( 2r+1 \right)}^{2}}-{{\left( 2r-1 \right)}^{2}}}{{{\left( 2r+1 \right)}^{2}}{{\left( 2r-1 \right)}^{2}}}$.
We solve the equation and get
${{T}_{r}}=\dfrac{{{\left( 2r+1 \right)}^{2}}}{{{\left( 2r+1 \right)}^{2}}{{\left( 2r-1 \right)}^{2}}}-\dfrac{{{\left( 2r-1 \right)}^{2}}}{{{\left( 2r+1 \right)}^{2}}{{\left( 2r-1 \right)}^{2}}}=\dfrac{1}{{{\left( 2r-1 \right)}^{2}}}-\dfrac{1}{{{\left( 2r+1 \right)}^{2}}}$.
We form the given series in a repetitive for mand then we put the values for $100\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)$.
We try to find the value of $\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)$ putting the values starting from 1.
$\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)={{T}_{1}}+{{T}_{2}}+{{T}_{3}}+......+{{T}_{\infty }}$
At $r=1$, \[{{T}_{1}}=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{3}^{2}}}\]
At $r=2$, \[{{T}_{2}}=\dfrac{1}{{{3}^{2}}}-\dfrac{1}{{{5}^{2}}}\]
At $r=3$, \[{{T}_{3}}=\dfrac{1}{{{5}^{2}}}-\dfrac{1}{{{7}^{2}}}\]
………………………..
……………………….
Adding all the terms we get
$\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)={{T}_{1}}+{{T}_{2}}+{{T}_{3}}+......=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{2}}}-\dfrac{1}{{{5}^{2}}}+\dfrac{1}{{{5}^{2}}}-\dfrac{1}{{{7}^{2}}}+.........\infty $
Now we don’t need to care about the end as when it tends to infinity the actual value tends to 0. So, we only need to care about the start.
$\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{2}}}-\dfrac{1}{{{5}^{2}}}+\dfrac{1}{{{5}^{2}}}-\dfrac{1}{{{7}^{2}}}+.........\infty =1$
This is an approximate value. The first part of a term gets cancelled out with the last part of its previous term.
Now we find the value of $100\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)$ which is $100\times 1=100$.
The answer of $100\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)$ is 100.
Note: We can understand that we have to form the repetition form of the series seeing the sum over form. The problem will use the terms and its factorisation to solve itself, in some cases we will have n instead infinity. At that time, we will take the end term of the last series for $r=n$.
Complete step by step answer:
We first try to form the given equation in its simplest form.
We have ${{T}_{r}}=\dfrac{8r}{16{{r}^{4}}-8{{r}^{2}}+1}$. We work on the denominator of the fraction.
$16{{r}^{4}}-8{{r}^{2}}+1$ can be factored into parts. So, we form the factorisation. First, we form the square.
$\begin{align}
& 16{{r}^{4}}-8{{r}^{2}}+1 \\
& ={{\left( 4{{r}^{2}} \right)}^{2}}-2\times 4{{r}^{2}}\times 1+{{1}^{2}} \\
& ={{\left( 4{{r}^{2}}-1 \right)}^{2}} \\
\end{align}$
Now we use the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
$\begin{align}
& {{\left( 4{{r}^{2}}-1 \right)}^{2}} \\
& ={{\left\{ {{\left( 2r \right)}^{2}}-{{1}^{2}} \right\}}^{2}} \\
& ={{\left\{ \left( 2r+1 \right)\left( 2r-1 \right) \right\}}^{2}} \\
& ={{\left( 2r+1 \right)}^{2}}{{\left( 2r-1 \right)}^{2}} \\
\end{align}$
We also know that ${{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}=4ab$. Putting $a=2r+1,b=2r-1$ we get
${{\left( 2r+1 \right)}^{2}}-{{\left( 2r-1 \right)}^{2}}=4\times 2r\times 1=8r$.
So, we can express 8r as ${{\left( 2r+1 \right)}^{2}}-{{\left( 2r-1 \right)}^{2}}$.
Now we change our given form of series.
${{T}_{r}}=\dfrac{8r}{16{{r}^{4}}-8{{r}^{2}}+1}$. We place the previous values and get ${{T}_{r}}=\dfrac{{{\left( 2r+1 \right)}^{2}}-{{\left( 2r-1 \right)}^{2}}}{{{\left( 2r+1 \right)}^{2}}{{\left( 2r-1 \right)}^{2}}}$.
We solve the equation and get
${{T}_{r}}=\dfrac{{{\left( 2r+1 \right)}^{2}}}{{{\left( 2r+1 \right)}^{2}}{{\left( 2r-1 \right)}^{2}}}-\dfrac{{{\left( 2r-1 \right)}^{2}}}{{{\left( 2r+1 \right)}^{2}}{{\left( 2r-1 \right)}^{2}}}=\dfrac{1}{{{\left( 2r-1 \right)}^{2}}}-\dfrac{1}{{{\left( 2r+1 \right)}^{2}}}$.
We form the given series in a repetitive for mand then we put the values for $100\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)$.
We try to find the value of $\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)$ putting the values starting from 1.
$\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)={{T}_{1}}+{{T}_{2}}+{{T}_{3}}+......+{{T}_{\infty }}$
At $r=1$, \[{{T}_{1}}=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{3}^{2}}}\]
At $r=2$, \[{{T}_{2}}=\dfrac{1}{{{3}^{2}}}-\dfrac{1}{{{5}^{2}}}\]
At $r=3$, \[{{T}_{3}}=\dfrac{1}{{{5}^{2}}}-\dfrac{1}{{{7}^{2}}}\]
………………………..
……………………….
Adding all the terms we get
$\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)={{T}_{1}}+{{T}_{2}}+{{T}_{3}}+......=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{2}}}-\dfrac{1}{{{5}^{2}}}+\dfrac{1}{{{5}^{2}}}-\dfrac{1}{{{7}^{2}}}+.........\infty $
Now we don’t need to care about the end as when it tends to infinity the actual value tends to 0. So, we only need to care about the start.
$\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)=\dfrac{1}{{{1}^{2}}}-\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{2}}}-\dfrac{1}{{{5}^{2}}}+\dfrac{1}{{{5}^{2}}}-\dfrac{1}{{{7}^{2}}}+.........\infty =1$
This is an approximate value. The first part of a term gets cancelled out with the last part of its previous term.
Now we find the value of $100\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)$ which is $100\times 1=100$.
The answer of $100\left( \sum\limits_{r=1}^{\infty }{{{T}_{r}}} \right)$ is 100.
Note: We can understand that we have to form the repetition form of the series seeing the sum over form. The problem will use the terms and its factorisation to solve itself, in some cases we will have n instead infinity. At that time, we will take the end term of the last series for $r=n$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE