# If three points $({x_1},{y_1}),({x_2},{y_2})$ and $({x_3},{y_3})$ lie on the same line then, prove that

$\frac{{{y_2} - {y_3}}}{{{x_2}{x_3}}} + \frac{{{y_3} - {y_1}}}{{{x_3}{x_1}}} + \frac{{{y_1} - {y_2}}}{{{x_1}{x_2}}} = 0.$

Last updated date: 29th Mar 2023

•

Total views: 309.6k

•

Views today: 7.86k

Answer

Verified

309.6k+ views

Hint: The given three points lie on the same line i.e., they are collinear. Use the condition of collinearity of three points.

According to question, three points $({x_1},{y_1}),({x_2},{y_2})$ and $({x_3},{y_3})$ lie on the same line. So we can say that the points are collinear. And we know that for three points to be collinear, following condition will hold:

${x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2}) = 0 $

Dividing by ${x_1}{x_2}{x_3}$ on both sides of this equation, we’ll get:

$

\Rightarrow \frac{{{x_1}({y_2} - {y_3})}}{{{x_1}{x_2}{x_3}}} + \frac{{{x_2}({y_3} - {y_1})}}{{{x_1}{x_2}{x_3}}} + \frac{{{x_3}({y_1} - {y_2})}}{{{x_1}{x_2}{x_3}}} = 0 \\

\Rightarrow \frac{{{y_2} - {y_3}}}{{{x_2}{x_3}}} + \frac{{{y_3} - {y_1}}}{{{x_3}{x_1}}} + \frac{{{y_1} - {y_2}}}{{{x_1}{x_2}}} = 0 \\

\ $

This is the required proof.

Note: Since the points are collinear (lying on the same line), we can equate the slope of line formed using any two pair of points:

$ \Rightarrow \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{{y_3} - {y_2}}}{{{x_3} - {x_2}}}$

We will get the same condition as we have used earlier, ${x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2}) = 0$

According to question, three points $({x_1},{y_1}),({x_2},{y_2})$ and $({x_3},{y_3})$ lie on the same line. So we can say that the points are collinear. And we know that for three points to be collinear, following condition will hold:

${x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2}) = 0 $

Dividing by ${x_1}{x_2}{x_3}$ on both sides of this equation, we’ll get:

$

\Rightarrow \frac{{{x_1}({y_2} - {y_3})}}{{{x_1}{x_2}{x_3}}} + \frac{{{x_2}({y_3} - {y_1})}}{{{x_1}{x_2}{x_3}}} + \frac{{{x_3}({y_1} - {y_2})}}{{{x_1}{x_2}{x_3}}} = 0 \\

\Rightarrow \frac{{{y_2} - {y_3}}}{{{x_2}{x_3}}} + \frac{{{y_3} - {y_1}}}{{{x_3}{x_1}}} + \frac{{{y_1} - {y_2}}}{{{x_1}{x_2}}} = 0 \\

\ $

This is the required proof.

Note: Since the points are collinear (lying on the same line), we can equate the slope of line formed using any two pair of points:

$ \Rightarrow \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{{y_3} - {y_2}}}{{{x_3} - {x_2}}}$

We will get the same condition as we have used earlier, ${x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2}) = 0$

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE