If three points $\left( {k,2k} \right),\left( {2k,3k} \right),\left( {3,1} \right)$ are collinear, then k is equal to:
$
{\text{A}}{\text{. }} - 2 \\
{\text{B}}{\text{. }}1 \\
{\text{C}}{\text{. }}\dfrac{1}{2} \\
{\text{D}}{\text{. }} - \dfrac{1}{2} \\
$
Answer
365.4k+ views
Hint- Here, we will be using the formula for slope between two points.
Let the given three points be ${\text{P}}\left( {k,2k} \right),{\text{Q}}\left( {2k,3k} \right),{\text{R}}\left( {3,1} \right)$
As we know that the slope of any line joining two points ${\text{A}}\left( {a,b} \right)$ and ${\text{B}}\left( {c,d} \right)$ is given by $m = \dfrac{{d - b}}{{c - a}}$.
Slope of line PQ is ${m_{PQ}} = \dfrac{{3k - 2k}}{{2k - k}} = \dfrac{k}{k} = 1$
Slope of line QR is ${m_{QR}} = \dfrac{{1 - 3k}}{{3 - 2k}}$
Slope of line PR is ${m_{PR}} = \dfrac{{1 - 2k}}{{3 - k}}$
For all the three given points to be collinear, the slope of lines made by joining any two points will be equal.
$ \Rightarrow {m_{PQ}} = {m_{QR}} = {m_{PR}} \Rightarrow 1 = \dfrac{{1 - 3k}}{{3 - 2k}} = \dfrac{{1 - 2k}}{{3 - k}}$
When taking $ \Rightarrow 1 = \dfrac{{1 - 3k}}{{3 - 2k}} \Rightarrow 3 - 2k = 1 - 3k \Rightarrow k = - 2$
And when $ \Rightarrow 1 = \dfrac{{1 - 2k}}{{3 - k}} \Rightarrow 3 - k = 1 - 2k \Rightarrow k = - 2$
Therefore, the value of $k$ for which the given three points are collinear is $ - 2$.
Hence, option A is correct.
Note- In these types of problems where collinearity of points is the condition, the key feature is to make the slope of the lines joining any two points equal in order to find the unknown. In the above problem, while considered different slopes equality the value of the unknown comes out to be the same.
Let the given three points be ${\text{P}}\left( {k,2k} \right),{\text{Q}}\left( {2k,3k} \right),{\text{R}}\left( {3,1} \right)$
As we know that the slope of any line joining two points ${\text{A}}\left( {a,b} \right)$ and ${\text{B}}\left( {c,d} \right)$ is given by $m = \dfrac{{d - b}}{{c - a}}$.
Slope of line PQ is ${m_{PQ}} = \dfrac{{3k - 2k}}{{2k - k}} = \dfrac{k}{k} = 1$
Slope of line QR is ${m_{QR}} = \dfrac{{1 - 3k}}{{3 - 2k}}$
Slope of line PR is ${m_{PR}} = \dfrac{{1 - 2k}}{{3 - k}}$
For all the three given points to be collinear, the slope of lines made by joining any two points will be equal.
$ \Rightarrow {m_{PQ}} = {m_{QR}} = {m_{PR}} \Rightarrow 1 = \dfrac{{1 - 3k}}{{3 - 2k}} = \dfrac{{1 - 2k}}{{3 - k}}$
When taking $ \Rightarrow 1 = \dfrac{{1 - 3k}}{{3 - 2k}} \Rightarrow 3 - 2k = 1 - 3k \Rightarrow k = - 2$
And when $ \Rightarrow 1 = \dfrac{{1 - 2k}}{{3 - k}} \Rightarrow 3 - k = 1 - 2k \Rightarrow k = - 2$
Therefore, the value of $k$ for which the given three points are collinear is $ - 2$.
Hence, option A is correct.
Note- In these types of problems where collinearity of points is the condition, the key feature is to make the slope of the lines joining any two points equal in order to find the unknown. In the above problem, while considered different slopes equality the value of the unknown comes out to be the same.
Last updated date: 30th Sep 2023
•
Total views: 365.4k
•
Views today: 8.65k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
