
If $\theta $ is an acute angle and $\sin \theta = \cos \theta $, find the value of $2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1$.
Answer
609.3k+ views
Hint: Here, we will be finding the value of angle $\theta $ from the given equation and then we will be using the values like $\tan {45^0} = 1$ and \[\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\] given in the trigonometric table in order to obtain the value of the given expression.
Complete step-by-step answer:
Given, $\sin \theta = \cos \theta $ where $\theta $ is an acute angle
As we know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
The given equation can be rearranged as $
\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = 1 \\
\Rightarrow \tan \theta = 1{\text{ }} \to {\text{(1)}} \\
$
Also we know that tangent of 45 degrees is equal to 1 i.e., $\tan {45^0} = 1{\text{ }} \to {\text{(2)}}$
By comparing equations (1) and (2), we will get the value for $\theta $
$ \Rightarrow \theta = {45^0}$
Here, we have considered only $\theta = {45^0}$ because it is given that $\theta $ is an acute angle (angle which is less than 90 degrees).
Let us suppose the value of expression whose value we need to find is x
So, $x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1$
Now, let us substitute the value of $\theta = {45^0}$ in the above expression in order to find the value of x.
\[
\Rightarrow x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 \\
\Rightarrow x = 2{\left( {\tan {{45}^0}} \right)^2} + {\left( {\sin {{45}^0}} \right)^2} - 1{\text{ }} \to {\text{(3)}} \\
\]
According to trigonometric table, we can write
\[\tan {45^0} = 1\] and \[\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Putting these values in equation (3), we get
\[ \Rightarrow x = 2{\left( 1 \right)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} - 1 = 2 + \dfrac{1}{2} - 1 = 1 + \dfrac{1}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2}\]
Therefore, the value of the expression is given by \[2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 = \dfrac{3}{2}\].
Note: In this problem, the important step lies in the determination of the angle $\theta $ because $\tan \theta = 1$ gives various values of $\theta $ as $\theta = {45^0},{225^0},{405^0}$, etc but in the problem it is given that $\theta $ is an acute angle so we will consider only that value of $\theta $ which measures less than ${90^0}$. That’s why the only possible result of $\tan \theta = 1$ is $\theta = {45^0}$.
Complete step-by-step answer:
Given, $\sin \theta = \cos \theta $ where $\theta $ is an acute angle
As we know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
The given equation can be rearranged as $
\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = 1 \\
\Rightarrow \tan \theta = 1{\text{ }} \to {\text{(1)}} \\
$
Also we know that tangent of 45 degrees is equal to 1 i.e., $\tan {45^0} = 1{\text{ }} \to {\text{(2)}}$
By comparing equations (1) and (2), we will get the value for $\theta $
$ \Rightarrow \theta = {45^0}$
Here, we have considered only $\theta = {45^0}$ because it is given that $\theta $ is an acute angle (angle which is less than 90 degrees).
Let us suppose the value of expression whose value we need to find is x
So, $x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1$
Now, let us substitute the value of $\theta = {45^0}$ in the above expression in order to find the value of x.
\[
\Rightarrow x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 \\
\Rightarrow x = 2{\left( {\tan {{45}^0}} \right)^2} + {\left( {\sin {{45}^0}} \right)^2} - 1{\text{ }} \to {\text{(3)}} \\
\]
According to trigonometric table, we can write
\[\tan {45^0} = 1\] and \[\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Putting these values in equation (3), we get
\[ \Rightarrow x = 2{\left( 1 \right)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} - 1 = 2 + \dfrac{1}{2} - 1 = 1 + \dfrac{1}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2}\]
Therefore, the value of the expression is given by \[2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 = \dfrac{3}{2}\].
Note: In this problem, the important step lies in the determination of the angle $\theta $ because $\tan \theta = 1$ gives various values of $\theta $ as $\theta = {45^0},{225^0},{405^0}$, etc but in the problem it is given that $\theta $ is an acute angle so we will consider only that value of $\theta $ which measures less than ${90^0}$. That’s why the only possible result of $\tan \theta = 1$ is $\theta = {45^0}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

