Answer
Verified
476.7k+ views
Hint: Here, we will be finding the value of angle $\theta $ from the given equation and then we will be using the values like $\tan {45^0} = 1$ and \[\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\] given in the trigonometric table in order to obtain the value of the given expression.
Complete step-by-step answer:
Given, $\sin \theta = \cos \theta $ where $\theta $ is an acute angle
As we know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
The given equation can be rearranged as $
\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = 1 \\
\Rightarrow \tan \theta = 1{\text{ }} \to {\text{(1)}} \\
$
Also we know that tangent of 45 degrees is equal to 1 i.e., $\tan {45^0} = 1{\text{ }} \to {\text{(2)}}$
By comparing equations (1) and (2), we will get the value for $\theta $
$ \Rightarrow \theta = {45^0}$
Here, we have considered only $\theta = {45^0}$ because it is given that $\theta $ is an acute angle (angle which is less than 90 degrees).
Let us suppose the value of expression whose value we need to find is x
So, $x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1$
Now, let us substitute the value of $\theta = {45^0}$ in the above expression in order to find the value of x.
\[
\Rightarrow x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 \\
\Rightarrow x = 2{\left( {\tan {{45}^0}} \right)^2} + {\left( {\sin {{45}^0}} \right)^2} - 1{\text{ }} \to {\text{(3)}} \\
\]
According to trigonometric table, we can write
\[\tan {45^0} = 1\] and \[\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Putting these values in equation (3), we get
\[ \Rightarrow x = 2{\left( 1 \right)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} - 1 = 2 + \dfrac{1}{2} - 1 = 1 + \dfrac{1}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2}\]
Therefore, the value of the expression is given by \[2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 = \dfrac{3}{2}\].
Note: In this problem, the important step lies in the determination of the angle $\theta $ because $\tan \theta = 1$ gives various values of $\theta $ as $\theta = {45^0},{225^0},{405^0}$, etc but in the problem it is given that $\theta $ is an acute angle so we will consider only that value of $\theta $ which measures less than ${90^0}$. That’s why the only possible result of $\tan \theta = 1$ is $\theta = {45^0}$.
Complete step-by-step answer:
Given, $\sin \theta = \cos \theta $ where $\theta $ is an acute angle
As we know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
The given equation can be rearranged as $
\Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = 1 \\
\Rightarrow \tan \theta = 1{\text{ }} \to {\text{(1)}} \\
$
Also we know that tangent of 45 degrees is equal to 1 i.e., $\tan {45^0} = 1{\text{ }} \to {\text{(2)}}$
By comparing equations (1) and (2), we will get the value for $\theta $
$ \Rightarrow \theta = {45^0}$
Here, we have considered only $\theta = {45^0}$ because it is given that $\theta $ is an acute angle (angle which is less than 90 degrees).
Let us suppose the value of expression whose value we need to find is x
So, $x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1$
Now, let us substitute the value of $\theta = {45^0}$ in the above expression in order to find the value of x.
\[
\Rightarrow x = 2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 \\
\Rightarrow x = 2{\left( {\tan {{45}^0}} \right)^2} + {\left( {\sin {{45}^0}} \right)^2} - 1{\text{ }} \to {\text{(3)}} \\
\]
According to trigonometric table, we can write
\[\tan {45^0} = 1\] and \[\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Putting these values in equation (3), we get
\[ \Rightarrow x = 2{\left( 1 \right)^2} + {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} - 1 = 2 + \dfrac{1}{2} - 1 = 1 + \dfrac{1}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2}\]
Therefore, the value of the expression is given by \[2{\left( {\tan \theta } \right)^2} + {\left( {\sin \theta } \right)^2} - 1 = \dfrac{3}{2}\].
Note: In this problem, the important step lies in the determination of the angle $\theta $ because $\tan \theta = 1$ gives various values of $\theta $ as $\theta = {45^0},{225^0},{405^0}$, etc but in the problem it is given that $\theta $ is an acute angle so we will consider only that value of $\theta $ which measures less than ${90^0}$. That’s why the only possible result of $\tan \theta = 1$ is $\theta = {45^0}$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths