
If the wavelength of \[{H_{alpha}}\]line of Balmer series is \[{\text{X}}\,{{\text{A}}^{\text{0}}}\], then the wavelength of \[{H_{beta}}\]line of Balmer series is:
A. \[{\text{X}}\dfrac{{{\text{108}}}}{{{\text{80}}}}{{\text{A}}^{\text{0}}}\]
B. \[{\text{X}}\dfrac{{{\text{80}}}}{{{\text{108}}}}{{\text{A}}^{\text{0}}}\]
C. \[\dfrac{{\text{1}}}{{\text{X}}}\dfrac{{{\text{80}}}}{{{\text{108}}}}{{\text{A}}^{\text{0}}}\]
D. \[\dfrac{{\text{1}}}{{\text{X}}}\dfrac{{{\text{108}}}}{{{\text{80}}}}{{\text{A}}^{\text{0}}}\]
Answer
474k+ views
Hint: The hydrogen spectrum series is classified into five types. These are Lyman series, Balmer series, Paschen series, Bracket series and Pfund series.
Complete step by step answer:
We know that for Balmer series,
\[\dfrac{1}{{{\lambda }}} = {\text{R}}\left[ {\dfrac{1}{{{2^2}}} - \dfrac{{\text{1}}}{{{\text{n}}_{\text{2}}^{\text{2}}}}} \right]\] …..(1)
For the alpha line, n = 3. Using this value in the above expression (1) we get,
\[\dfrac{1}{{{{{\lambda }}_a}}} = {\text{R}}\left[ {\dfrac{1}{{{2^2}}} - \dfrac{{\text{1}}}{{{3^2}}}} \right] = \dfrac{1}{{\text{X}}}\]
\[
\Rightarrow \dfrac{1}{{{{{\lambda }}_a}}} = \,{{R \times }}\,\dfrac{{\text{5}}}{{{\text{36}}}} = \,\dfrac{1}{{\text{X}}} \\
\Rightarrow {\text{R}} = \,\dfrac{{{\text{36}}}}{{\text{5}}}{{ \times }}\dfrac{{\text{1}}}{{\text{X}}} \\
\] ……(2)
For the beta line, n = 4. Using this value in the above expression (1) we get,
\[ \Rightarrow \dfrac{1}{{{{{\lambda }}_{{\beta }}}}} = \,{\text{R}}\left[ {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{4^2}}}} \right] = \,\dfrac{3}{{16}}{\text{R}}\,\]
\[ \Rightarrow \dfrac{1}{{{{{\lambda }}_{{\beta }}}}} = \,{\text{X}}\dfrac{{80}}{{108}}{{\text{A}}^{\text{0}}}\,\]……(3)
So, the correct answer is Option C.
Additional Information:
The general formula for the hydrogen emission spectrum is given by Johannes Rydbergis :
\[\mathop \nu \limits^ - = \,109677\,\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)\]
Here,
\[{n_1}\]= 1,2,3,4 …
\[{n_2}\] = n1 +1
\[\mathop \nu \limits^ - \]= wave number of the electromagnetic radiation.
The series can be classified according to the transition in the following way:
Transition from the first shell, i.e. (n=1) to any other shell gives rise to the Lyman series
Transition from the second shell i.e. (n=2) to any other shell gives rise to the Balmer series
Transition from the third shell i.e. (n=3) to any other shell gives rise to the Paschen series
Transition from the fourth i.e. (n=4) shell to any other shell gives rise to the Bracket series
Transition from the fifth shell i.e. (n=5) to any other shell gives rise to the Pfund series
Note:
The value of Rydberg constant for hydrogen is \[109,677\,{\text{c}}{{\text{m}}^{ - 1}}\]. The Rydberg constant is used for the calculation of the wavelengths in the hydrogen spectrum.
Complete step by step answer:
We know that for Balmer series,
\[\dfrac{1}{{{\lambda }}} = {\text{R}}\left[ {\dfrac{1}{{{2^2}}} - \dfrac{{\text{1}}}{{{\text{n}}_{\text{2}}^{\text{2}}}}} \right]\] …..(1)
For the alpha line, n = 3. Using this value in the above expression (1) we get,
\[\dfrac{1}{{{{{\lambda }}_a}}} = {\text{R}}\left[ {\dfrac{1}{{{2^2}}} - \dfrac{{\text{1}}}{{{3^2}}}} \right] = \dfrac{1}{{\text{X}}}\]
\[
\Rightarrow \dfrac{1}{{{{{\lambda }}_a}}} = \,{{R \times }}\,\dfrac{{\text{5}}}{{{\text{36}}}} = \,\dfrac{1}{{\text{X}}} \\
\Rightarrow {\text{R}} = \,\dfrac{{{\text{36}}}}{{\text{5}}}{{ \times }}\dfrac{{\text{1}}}{{\text{X}}} \\
\] ……(2)
For the beta line, n = 4. Using this value in the above expression (1) we get,
\[ \Rightarrow \dfrac{1}{{{{{\lambda }}_{{\beta }}}}} = \,{\text{R}}\left[ {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{4^2}}}} \right] = \,\dfrac{3}{{16}}{\text{R}}\,\]
\[ \Rightarrow \dfrac{1}{{{{{\lambda }}_{{\beta }}}}} = \,{\text{X}}\dfrac{{80}}{{108}}{{\text{A}}^{\text{0}}}\,\]……(3)
So, the correct answer is Option C.
Additional Information:
The general formula for the hydrogen emission spectrum is given by Johannes Rydbergis :
\[\mathop \nu \limits^ - = \,109677\,\left( {\dfrac{1}{{{n_1}^2}} - \dfrac{1}{{{n_2}^2}}} \right)\]
Here,
\[{n_1}\]= 1,2,3,4 …
\[{n_2}\] = n1 +1
\[\mathop \nu \limits^ - \]= wave number of the electromagnetic radiation.
The series can be classified according to the transition in the following way:
Transition from the first shell, i.e. (n=1) to any other shell gives rise to the Lyman series
Transition from the second shell i.e. (n=2) to any other shell gives rise to the Balmer series
Transition from the third shell i.e. (n=3) to any other shell gives rise to the Paschen series
Transition from the fourth i.e. (n=4) shell to any other shell gives rise to the Bracket series
Transition from the fifth shell i.e. (n=5) to any other shell gives rise to the Pfund series
Note:
The value of Rydberg constant for hydrogen is \[109,677\,{\text{c}}{{\text{m}}^{ - 1}}\]. The Rydberg constant is used for the calculation of the wavelengths in the hydrogen spectrum.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
