Courses
Courses for Kids
Free study material
Free LIVE classes
More
LIVE
Join Vedantu’s FREE Mastercalss

If the value of $^n{C_6}{:^{n - 3}}{C_3} = 33:4,$ find the value of n.

Answer
VerifiedVerified
360.6k+ views
Hint: Let's make use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\] \[\] and solve this.

Complete step-by-step answer:
By making use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\]
We can write \[{n_{{C_6} = \dfrac{{n!}}{{(n - 6)!6!}}}}\]
                       \[n - {3_{{C_3} = \dfrac{{n!}}{{(n - 6)!3!}}}}\]
So ,now we can write the ratio $\dfrac{{^n{C_6}}}{{^{n - 3}{C_3}}} = \dfrac{{33}}{4}$
Lets substitute the values of $^n{C_6}$ and $^n{C_3}$
So, we get \[\dfrac{{_{\dfrac{{n!}}{{(n - 6)!6!}}}}}{{_{\dfrac{{(n - 3)!}}{{(n - 6)!3!}}}}} = \dfrac{{33}}{4}\]
Here, we will make use of the formula $n! = n(n - 1)!$ and write

$n! = n(n - 1)(n - 2)(n - 3)!$ in the numerator .

So, from this we can cancel out $(n - 3)!,(n - 6)!$ in the numerator and denominator
$\dfrac{{n(n - 1)(n - 2)}}{{6!}} \times 3! = \dfrac{{33}}{4}$

On shifting $6!$ and $3!$ to the right hand side, we get
$n(n - 1)(n - 2) = 11 \times 3 \times 5 \times 2 \times 3 = 11 \times 10 \times 9$
Therefore n=11.

Note: While expressing $n! = n(n - 1)!$ express it upto the term which is present in the denominator so that the terms in the numerator and denominator will get cancelled out and it would be easy to solve.
Last updated date: 24th Sep 2023
•
Total views: 360.6k
•
Views today: 4.60k