
If the value of $^n{C_6}{:^{n - 3}}{C_3} = 33:4,$ find the value of n.
Answer
605.4k+ views
Hint: Let's make use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\] \[\] and solve this.
Complete step-by-step answer:
By making use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\]
We can write \[{n_{{C_6} = \dfrac{{n!}}{{(n - 6)!6!}}}}\]
\[n - {3_{{C_3} = \dfrac{{n!}}{{(n - 6)!3!}}}}\]
So ,now we can write the ratio $\dfrac{{^n{C_6}}}{{^{n - 3}{C_3}}} = \dfrac{{33}}{4}$
Lets substitute the values of $^n{C_6}$ and $^n{C_3}$
So, we get \[\dfrac{{_{\dfrac{{n!}}{{(n - 6)!6!}}}}}{{_{\dfrac{{(n - 3)!}}{{(n - 6)!3!}}}}} = \dfrac{{33}}{4}\]
Here, we will make use of the formula $n! = n(n - 1)!$ and write
$n! = n(n - 1)(n - 2)(n - 3)!$ in the numerator .
So, from this we can cancel out $(n - 3)!,(n - 6)!$ in the numerator and denominator
$\dfrac{{n(n - 1)(n - 2)}}{{6!}} \times 3! = \dfrac{{33}}{4}$
On shifting $6!$ and $3!$ to the right hand side, we get
$n(n - 1)(n - 2) = 11 \times 3 \times 5 \times 2 \times 3 = 11 \times 10 \times 9$
Therefore n=11.
Note: While expressing $n! = n(n - 1)!$ express it upto the term which is present in the denominator so that the terms in the numerator and denominator will get cancelled out and it would be easy to solve.
Complete step-by-step answer:
By making use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\]
We can write \[{n_{{C_6} = \dfrac{{n!}}{{(n - 6)!6!}}}}\]
\[n - {3_{{C_3} = \dfrac{{n!}}{{(n - 6)!3!}}}}\]
So ,now we can write the ratio $\dfrac{{^n{C_6}}}{{^{n - 3}{C_3}}} = \dfrac{{33}}{4}$
Lets substitute the values of $^n{C_6}$ and $^n{C_3}$
So, we get \[\dfrac{{_{\dfrac{{n!}}{{(n - 6)!6!}}}}}{{_{\dfrac{{(n - 3)!}}{{(n - 6)!3!}}}}} = \dfrac{{33}}{4}\]
Here, we will make use of the formula $n! = n(n - 1)!$ and write
$n! = n(n - 1)(n - 2)(n - 3)!$ in the numerator .
So, from this we can cancel out $(n - 3)!,(n - 6)!$ in the numerator and denominator
$\dfrac{{n(n - 1)(n - 2)}}{{6!}} \times 3! = \dfrac{{33}}{4}$
On shifting $6!$ and $3!$ to the right hand side, we get
$n(n - 1)(n - 2) = 11 \times 3 \times 5 \times 2 \times 3 = 11 \times 10 \times 9$
Therefore n=11.
Note: While expressing $n! = n(n - 1)!$ express it upto the term which is present in the denominator so that the terms in the numerator and denominator will get cancelled out and it would be easy to solve.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

