Answer
Verified
491.4k+ views
Hint: Let's make use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\] \[\] and solve this.
Complete step-by-step answer:
By making use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\]
We can write \[{n_{{C_6} = \dfrac{{n!}}{{(n - 6)!6!}}}}\]
\[n - {3_{{C_3} = \dfrac{{n!}}{{(n - 6)!3!}}}}\]
So ,now we can write the ratio $\dfrac{{^n{C_6}}}{{^{n - 3}{C_3}}} = \dfrac{{33}}{4}$
Lets substitute the values of $^n{C_6}$ and $^n{C_3}$
So, we get \[\dfrac{{_{\dfrac{{n!}}{{(n - 6)!6!}}}}}{{_{\dfrac{{(n - 3)!}}{{(n - 6)!3!}}}}} = \dfrac{{33}}{4}\]
Here, we will make use of the formula $n! = n(n - 1)!$ and write
$n! = n(n - 1)(n - 2)(n - 3)!$ in the numerator .
So, from this we can cancel out $(n - 3)!,(n - 6)!$ in the numerator and denominator
$\dfrac{{n(n - 1)(n - 2)}}{{6!}} \times 3! = \dfrac{{33}}{4}$
On shifting $6!$ and $3!$ to the right hand side, we get
$n(n - 1)(n - 2) = 11 \times 3 \times 5 \times 2 \times 3 = 11 \times 10 \times 9$
Therefore n=11.
Note: While expressing $n! = n(n - 1)!$ express it upto the term which is present in the denominator so that the terms in the numerator and denominator will get cancelled out and it would be easy to solve.
Complete step-by-step answer:
By making use of the formula \[{n_{{C_r} = \dfrac{{n!}}{{(n - r)!r!}}}}\]
We can write \[{n_{{C_6} = \dfrac{{n!}}{{(n - 6)!6!}}}}\]
\[n - {3_{{C_3} = \dfrac{{n!}}{{(n - 6)!3!}}}}\]
So ,now we can write the ratio $\dfrac{{^n{C_6}}}{{^{n - 3}{C_3}}} = \dfrac{{33}}{4}$
Lets substitute the values of $^n{C_6}$ and $^n{C_3}$
So, we get \[\dfrac{{_{\dfrac{{n!}}{{(n - 6)!6!}}}}}{{_{\dfrac{{(n - 3)!}}{{(n - 6)!3!}}}}} = \dfrac{{33}}{4}\]
Here, we will make use of the formula $n! = n(n - 1)!$ and write
$n! = n(n - 1)(n - 2)(n - 3)!$ in the numerator .
So, from this we can cancel out $(n - 3)!,(n - 6)!$ in the numerator and denominator
$\dfrac{{n(n - 1)(n - 2)}}{{6!}} \times 3! = \dfrac{{33}}{4}$
On shifting $6!$ and $3!$ to the right hand side, we get
$n(n - 1)(n - 2) = 11 \times 3 \times 5 \times 2 \times 3 = 11 \times 10 \times 9$
Therefore n=11.
Note: While expressing $n! = n(n - 1)!$ express it upto the term which is present in the denominator so that the terms in the numerator and denominator will get cancelled out and it would be easy to solve.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE