
If the value of \[{{i}^{2}}=-1\], then calculate the value of \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}\].
(a) \[-4-i\]
(b) \[-2-i\]
(c) \[2+i\]
(d) \[4+i\]
(e) \[6+2i\]
Answer
592.8k+ views
Hint: To solve this question we will assume variables a, b, c to \[3{{i}^{2}},{{i}^{3}}\] & \[-{{i}^{4}}\] and we will use the identity that \[{{i}^{2}}=-1\]. Finally we will add them up to get the result.
Complete step-by-step solution:
We are given that the value of \[{{i}^{2}}=-1\], then the value of \[{{i}^{3}}\], \[{{i}^{4}}\] can be calculated separately.
Firstly we will calculate the value of \[{{i}^{3}}\] and \[{{i}^{4}}\], thus proceed to calculate the value of \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}\].
We have, \[{{i}^{2}}=-1\].
Then, Let \[a=3{{i}^{2}},b={{i}^{3}},c=-{{i}^{4}}\].
We have to calculate the value of a + b + c,
Because, \[{{i}^{2}}=-1\].
\[\begin{align}
& \Rightarrow 3{{i}^{2}}=\left( 3 \right)\left( -1 \right) \\
& \Rightarrow 3{{i}^{2}}=-3 \\
\end{align}\]
Therefore, $a = -3$ ------- (1)
Now consider b.
\[b={{i}^{3}}\]
We have, \[{{i}^{2}}=-1\].
Multiplying ‘i’ both sides of the above equation,
\[\Rightarrow {{i}^{3}}=-i\]
\[\Rightarrow b = -i \] ---------- (2)
Now compute, \[c=-{{i}^{4}}\].
We have, \[{{i}^{2}}=-1\].
Multiplying, \[{{i}^{2}}=-1\] on both sides we have,
\[\begin{align}
& {{i}^{4}}=\left( -1 \right)\left( -1 \right) \\
& \Rightarrow {{i}^{4}}=1 \\
\end{align}\]
Now, \[c=-{{i}^{4}}=-1\].
Hence, $c = -1$ –------ (3)
Now a + b + c, using (1), (2) & (3) we have,
\[a+b+c=-3-i-1=-4-i\], which is option (a).
Therefore, \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=-4-i\], option (a) is correct.
Note: Another way to solve this question can be directly. Substituting, \[{{i}^{2}}=-1\], \[{{i}^{4}}=1\] & \[{{i}^{3}}=-i\] to get the result, then answer would come as \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=3\left( -1 \right)+\left( -i \right)-1=-4-i\], option (a).
Complete step-by-step solution:
We are given that the value of \[{{i}^{2}}=-1\], then the value of \[{{i}^{3}}\], \[{{i}^{4}}\] can be calculated separately.
Firstly we will calculate the value of \[{{i}^{3}}\] and \[{{i}^{4}}\], thus proceed to calculate the value of \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}\].
We have, \[{{i}^{2}}=-1\].
Then, Let \[a=3{{i}^{2}},b={{i}^{3}},c=-{{i}^{4}}\].
We have to calculate the value of a + b + c,
Because, \[{{i}^{2}}=-1\].
\[\begin{align}
& \Rightarrow 3{{i}^{2}}=\left( 3 \right)\left( -1 \right) \\
& \Rightarrow 3{{i}^{2}}=-3 \\
\end{align}\]
Therefore, $a = -3$ ------- (1)
Now consider b.
\[b={{i}^{3}}\]
We have, \[{{i}^{2}}=-1\].
Multiplying ‘i’ both sides of the above equation,
\[\Rightarrow {{i}^{3}}=-i\]
\[\Rightarrow b = -i \] ---------- (2)
Now compute, \[c=-{{i}^{4}}\].
We have, \[{{i}^{2}}=-1\].
Multiplying, \[{{i}^{2}}=-1\] on both sides we have,
\[\begin{align}
& {{i}^{4}}=\left( -1 \right)\left( -1 \right) \\
& \Rightarrow {{i}^{4}}=1 \\
\end{align}\]
Now, \[c=-{{i}^{4}}=-1\].
Hence, $c = -1$ –------ (3)
Now a + b + c, using (1), (2) & (3) we have,
\[a+b+c=-3-i-1=-4-i\], which is option (a).
Therefore, \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=-4-i\], option (a) is correct.
Note: Another way to solve this question can be directly. Substituting, \[{{i}^{2}}=-1\], \[{{i}^{4}}=1\] & \[{{i}^{3}}=-i\] to get the result, then answer would come as \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=3\left( -1 \right)+\left( -i \right)-1=-4-i\], option (a).
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

