
If the value of \[\dfrac{\text{tan2}{{\text{6}}^{\circ }}+\text{tan1}{{\text{9}}^{\circ }}}{x\left( 1-\text{tan}{{26}^{\circ }}+\text{tan}{{19}^{\circ }} \right)}=\text{cos}{{60}^{\circ }}\] then the value of x is
\[\begin{align}
& \text{A}.1 \\
& \text{B}.2 \\
& \text{C}\text{.}\sqrt{2} \\
& \text{D}\text{.}\sqrt{3} \\
\end{align}\]
Answer
513.3k+ views
Hint:
To solve this question, we will use the trigonometric identity which is given as below:
\[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\]
Where A and B are angles. In our case, we take A as ${{26}^{\circ }}$ and B as ${{19}^{\circ }}$ after applying this identity, we will simplify by using the fact that, \[\text{tan}{{45}^{\circ }}=1\text{ and cos}{{60}^{\circ }}=\dfrac{1}{2}\] to get the value of x.
Complete step-by-step answer:
Given that \[\dfrac{\text{tan2}{{\text{6}}^{\circ }}+\text{tan1}{{\text{9}}^{\circ }}}{x\left( 1-\text{tan}{{26}^{\circ }}+\text{tan}{{19}^{\circ }} \right)}=\text{cos}{{60}^{\circ }}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
To solve this question, we will use the trigonometric identity which is given as below:
\[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\]
Where A and B are angles.
To solve this question, let us assume \[\text{A=}{{26}^{\circ }}\] and the value of $\text{B=}{{19}^{\circ }}$
Applying the identity stated above and using $\text{A=}{{26}^{\circ }}\text{ and B=}{{19}^{\circ }}$ we get:
\[\text{tan}\left( {{26}^{\circ }}+{{19}^{\circ }} \right)\text{=}\dfrac{\text{tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}{\text{1-tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
In equation (i) multiplying both sides by x, we get:
\[\dfrac{\text{tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}{\text{1-tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}\text{=xcos}{{60}^{\circ }}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Comparing from equation (ii) and (iii) we get:
\[\begin{align}
& \text{xcos}{{60}^{\circ }}\text{=tan}\left( {{26}^{\circ }}+{{19}^{\circ }} \right) \\
& \Rightarrow \text{tan}\left( {{45}^{\circ }} \right)\text{=xcos}{{60}^{\circ }} \\
\end{align}\]
We know that, the value of \[\text{tan}{{45}^{\circ }}=1\text{ and cos}{{60}^{\circ }}=\dfrac{1}{2}\]
Substituting this above, we get:
\[\text{x}\dfrac{1}{2}=1\]
Multiply both sides with 2, we get:
\[\Rightarrow \text{x=2}\]
Hence the value of x = 2
So, the correct answer is “Option B”.
Note: The key point to note in this question is that, the trigonometric identity \[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\] is applicable when we have to calculate tan (A + B).
To solve this question, we will use the trigonometric identity which is given as below:
\[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\]
Where A and B are angles. In our case, we take A as ${{26}^{\circ }}$ and B as ${{19}^{\circ }}$ after applying this identity, we will simplify by using the fact that, \[\text{tan}{{45}^{\circ }}=1\text{ and cos}{{60}^{\circ }}=\dfrac{1}{2}\] to get the value of x.
Complete step-by-step answer:
Given that \[\dfrac{\text{tan2}{{\text{6}}^{\circ }}+\text{tan1}{{\text{9}}^{\circ }}}{x\left( 1-\text{tan}{{26}^{\circ }}+\text{tan}{{19}^{\circ }} \right)}=\text{cos}{{60}^{\circ }}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
To solve this question, we will use the trigonometric identity which is given as below:
\[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\]
Where A and B are angles.
To solve this question, let us assume \[\text{A=}{{26}^{\circ }}\] and the value of $\text{B=}{{19}^{\circ }}$
Applying the identity stated above and using $\text{A=}{{26}^{\circ }}\text{ and B=}{{19}^{\circ }}$ we get:
\[\text{tan}\left( {{26}^{\circ }}+{{19}^{\circ }} \right)\text{=}\dfrac{\text{tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}{\text{1-tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
In equation (i) multiplying both sides by x, we get:
\[\dfrac{\text{tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}{\text{1-tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}\text{=xcos}{{60}^{\circ }}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Comparing from equation (ii) and (iii) we get:
\[\begin{align}
& \text{xcos}{{60}^{\circ }}\text{=tan}\left( {{26}^{\circ }}+{{19}^{\circ }} \right) \\
& \Rightarrow \text{tan}\left( {{45}^{\circ }} \right)\text{=xcos}{{60}^{\circ }} \\
\end{align}\]
We know that, the value of \[\text{tan}{{45}^{\circ }}=1\text{ and cos}{{60}^{\circ }}=\dfrac{1}{2}\]
Substituting this above, we get:
\[\text{x}\dfrac{1}{2}=1\]
Multiply both sides with 2, we get:
\[\Rightarrow \text{x=2}\]
Hence the value of x = 2
So, the correct answer is “Option B”.
Note: The key point to note in this question is that, the trigonometric identity \[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\] is applicable when we have to calculate tan (A + B).
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
