
If the value of \[\dfrac{\text{tan2}{{\text{6}}^{\circ }}+\text{tan1}{{\text{9}}^{\circ }}}{x\left( 1-\text{tan}{{26}^{\circ }}+\text{tan}{{19}^{\circ }} \right)}=\text{cos}{{60}^{\circ }}\] then the value of x is
\[\begin{align}
& \text{A}.1 \\
& \text{B}.2 \\
& \text{C}\text{.}\sqrt{2} \\
& \text{D}\text{.}\sqrt{3} \\
\end{align}\]
Answer
577.2k+ views
Hint:
To solve this question, we will use the trigonometric identity which is given as below:
\[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\]
Where A and B are angles. In our case, we take A as ${{26}^{\circ }}$ and B as ${{19}^{\circ }}$ after applying this identity, we will simplify by using the fact that, \[\text{tan}{{45}^{\circ }}=1\text{ and cos}{{60}^{\circ }}=\dfrac{1}{2}\] to get the value of x.
Complete step-by-step answer:
Given that \[\dfrac{\text{tan2}{{\text{6}}^{\circ }}+\text{tan1}{{\text{9}}^{\circ }}}{x\left( 1-\text{tan}{{26}^{\circ }}+\text{tan}{{19}^{\circ }} \right)}=\text{cos}{{60}^{\circ }}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
To solve this question, we will use the trigonometric identity which is given as below:
\[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\]
Where A and B are angles.
To solve this question, let us assume \[\text{A=}{{26}^{\circ }}\] and the value of $\text{B=}{{19}^{\circ }}$
Applying the identity stated above and using $\text{A=}{{26}^{\circ }}\text{ and B=}{{19}^{\circ }}$ we get:
\[\text{tan}\left( {{26}^{\circ }}+{{19}^{\circ }} \right)\text{=}\dfrac{\text{tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}{\text{1-tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
In equation (i) multiplying both sides by x, we get:
\[\dfrac{\text{tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}{\text{1-tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}\text{=xcos}{{60}^{\circ }}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Comparing from equation (ii) and (iii) we get:
\[\begin{align}
& \text{xcos}{{60}^{\circ }}\text{=tan}\left( {{26}^{\circ }}+{{19}^{\circ }} \right) \\
& \Rightarrow \text{tan}\left( {{45}^{\circ }} \right)\text{=xcos}{{60}^{\circ }} \\
\end{align}\]
We know that, the value of \[\text{tan}{{45}^{\circ }}=1\text{ and cos}{{60}^{\circ }}=\dfrac{1}{2}\]
Substituting this above, we get:
\[\text{x}\dfrac{1}{2}=1\]
Multiply both sides with 2, we get:
\[\Rightarrow \text{x=2}\]
Hence the value of x = 2
So, the correct answer is “Option B”.
Note: The key point to note in this question is that, the trigonometric identity \[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\] is applicable when we have to calculate tan (A + B).
To solve this question, we will use the trigonometric identity which is given as below:
\[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\]
Where A and B are angles. In our case, we take A as ${{26}^{\circ }}$ and B as ${{19}^{\circ }}$ after applying this identity, we will simplify by using the fact that, \[\text{tan}{{45}^{\circ }}=1\text{ and cos}{{60}^{\circ }}=\dfrac{1}{2}\] to get the value of x.
Complete step-by-step answer:
Given that \[\dfrac{\text{tan2}{{\text{6}}^{\circ }}+\text{tan1}{{\text{9}}^{\circ }}}{x\left( 1-\text{tan}{{26}^{\circ }}+\text{tan}{{19}^{\circ }} \right)}=\text{cos}{{60}^{\circ }}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
To solve this question, we will use the trigonometric identity which is given as below:
\[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\]
Where A and B are angles.
To solve this question, let us assume \[\text{A=}{{26}^{\circ }}\] and the value of $\text{B=}{{19}^{\circ }}$
Applying the identity stated above and using $\text{A=}{{26}^{\circ }}\text{ and B=}{{19}^{\circ }}$ we get:
\[\text{tan}\left( {{26}^{\circ }}+{{19}^{\circ }} \right)\text{=}\dfrac{\text{tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}{\text{1-tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)}\]
In equation (i) multiplying both sides by x, we get:
\[\dfrac{\text{tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}{\text{1-tan}{{26}^{\circ }}\text{+tan}{{19}^{\circ }}}\text{=xcos}{{60}^{\circ }}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Comparing from equation (ii) and (iii) we get:
\[\begin{align}
& \text{xcos}{{60}^{\circ }}\text{=tan}\left( {{26}^{\circ }}+{{19}^{\circ }} \right) \\
& \Rightarrow \text{tan}\left( {{45}^{\circ }} \right)\text{=xcos}{{60}^{\circ }} \\
\end{align}\]
We know that, the value of \[\text{tan}{{45}^{\circ }}=1\text{ and cos}{{60}^{\circ }}=\dfrac{1}{2}\]
Substituting this above, we get:
\[\text{x}\dfrac{1}{2}=1\]
Multiply both sides with 2, we get:
\[\Rightarrow \text{x=2}\]
Hence the value of x = 2
So, the correct answer is “Option B”.
Note: The key point to note in this question is that, the trigonometric identity \[\dfrac{\text{tanA+tanB}}{\text{1-tanAtanB}}\text{=tan}\left( \text{A+B} \right)\] is applicable when we have to calculate tan (A + B).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

