If the value of Avogadro number is $6.023\times { 10 }^{ 23 }{ mol }^{ -1 }$ and the value of Boltzmann constant is $1.380\times { 10 }^{ -23 }{J}{ K }^{ -1 }$, then the number of significant figures in the calculated value of Universal gas constant is:
A) 4
B) 5
C) 3
D) 2
Answer
354.3k+ views
Hint: We know that the number of significant figures in the result of any mathematical operation of two numbers will be the least number of significant figures of both numbers. Try to find out the formula for gas constant and calculate its value in the required number of significant figures.
Complete step by step answer:
We know that the Kinetic energy of one mole of an ideal gas is $\dfrac { 3 }{ 2 }$RT
Where R is Universal gas constant and T is the temperature of the gas.
We know that the kinetic energy of a single atom of that ideal gas is $\dfrac { 3 }{ 2 }$kT
Where k is Boltzmann constant
1 mole of gas contains an Avogadro number of atoms. For Ideal gas, there will be no atom to atom interactions. The kinetic energy of Avogadro number of atoms is N×3/2 kT which is equal to the kinetic energy of one mole. Avogadro number N = $6.023\times { 10 }^{ 23 }{ mol }^{ -1 }$
$\dfrac { 3 }{ 2 }$RT = $\dfrac { 3 }{ 2 }$NkT
R = Nk
Boltzmann constant k = $1.380\times { 10 }^{ -23 }{J}{ K }^{ -1 }$
R = $6.023\times { 10 }^{ 23 }\times 1.380\times { 10 }^{ -23 }{ J }{ K }^{ -1 }{ mol }^{ -1 }$
R = $6.023\times 1.380{ J }{ K }^{ -1 }{ mol }^{ -1 }$
Number of significant digits in Avogadro number will be 4 those are $6.023\times { 10 }^{ 23 }{ mol }^{ -1 }$
Number of significant digits in Boltzmann constant will be 4 those are $1.380\times { 10 }^{ -23 }{J}{ K }^{ -1 }$
The number of significant figures present in the Avogadro number and Boltzmann constant are the same. So Universal gas constant will contain the same number of significant figures which is equal to 4.
R = $8.31174 { J }{ K }^{ -1 }{ mol }^{ -1 }$ which is rounded to 4 significant figures and rounded value is R = $8.312{ J }{ K }^{ -1 }{ mol }^{ -1 }$
Therefore, option A is the correct answer.
Note: While counting the number of significant figures we may make a mistake so we need to follow all the rules of significant figures correctly. We observe that the number of significant figures in the Gas constant and Boltzmann constant are the same.
Complete step by step answer:
We know that the Kinetic energy of one mole of an ideal gas is $\dfrac { 3 }{ 2 }$RT
Where R is Universal gas constant and T is the temperature of the gas.
We know that the kinetic energy of a single atom of that ideal gas is $\dfrac { 3 }{ 2 }$kT
Where k is Boltzmann constant
1 mole of gas contains an Avogadro number of atoms. For Ideal gas, there will be no atom to atom interactions. The kinetic energy of Avogadro number of atoms is N×3/2 kT which is equal to the kinetic energy of one mole. Avogadro number N = $6.023\times { 10 }^{ 23 }{ mol }^{ -1 }$
$\dfrac { 3 }{ 2 }$RT = $\dfrac { 3 }{ 2 }$NkT
R = Nk
Boltzmann constant k = $1.380\times { 10 }^{ -23 }{J}{ K }^{ -1 }$
R = $6.023\times { 10 }^{ 23 }\times 1.380\times { 10 }^{ -23 }{ J }{ K }^{ -1 }{ mol }^{ -1 }$
R = $6.023\times 1.380{ J }{ K }^{ -1 }{ mol }^{ -1 }$
Number of significant digits in Avogadro number will be 4 those are $6.023\times { 10 }^{ 23 }{ mol }^{ -1 }$
Number of significant digits in Boltzmann constant will be 4 those are $1.380\times { 10 }^{ -23 }{J}{ K }^{ -1 }$
The number of significant figures present in the Avogadro number and Boltzmann constant are the same. So Universal gas constant will contain the same number of significant figures which is equal to 4.
R = $8.31174 { J }{ K }^{ -1 }{ mol }^{ -1 }$ which is rounded to 4 significant figures and rounded value is R = $8.312{ J }{ K }^{ -1 }{ mol }^{ -1 }$
Therefore, option A is the correct answer.
Note: While counting the number of significant figures we may make a mistake so we need to follow all the rules of significant figures correctly. We observe that the number of significant figures in the Gas constant and Boltzmann constant are the same.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
