If the three distinct lines \[x + 2ay + a = 0\], \[x + 3by + b = 0\] and \[x + 4ay + a = 0\] are concurrent, then the point $(a,b)$ lies on a:
$A$. Circle
$B$. Hyperbola
$C$. Straight line
$D$. Parabola
Answer
Verified
505.8k+ views
Hint: - Determinant of a concurrent line is always zero. By solving the determinant we get the relation between point (a, b). That relation gives us the result where the point lies on.
We know that when the lines are concurrent it means that the determinant of the coefficient of the line must be zero.
Here the given equation of lines are
\[x + 2ay + a = 0\]
\[x + 3by + b = 0\]
\[x + 4ay + a = 0\]
By the property of concurrence of line,
$\left| \begin{gathered}
1{\text{ 2a a}} \\
{\text{1 3b b}} \\
{\text{1 4a a}} \\
\end{gathered} \right| = 0$
By applying row transformation \[{R_{1}} \to {R_{1}} - {R_3}\]
$\left| \begin{gathered}
{\text{0 }} - {\text{2a 0}} \\
{\text{1 3b b}} \\
{\text{1 4a a}} \\
\end{gathered} \right| = 0$
And now we open the determinant and the formula for opening the determinant is
\[0 \cdot \left| \begin{gathered}
3{\text{b b}} \\
{\text{4a a}} \\
\end{gathered} \right| - ( - 2{\text{a)}} \cdot \left| \begin{gathered}
1{\text{ b}} \\
{\text{1 a}} \\
\end{gathered} \right| + 0 \cdot \left| \begin{gathered}
1{\text{ 3b}} \\
{\text{1 4a}} \\
\end{gathered} \right| = 0\]
$0\left( {(a \times 3b) - (4a \times b)} \right) - ( - 2a)\left( {(a \times 1) - (b \times 1)} \right) + 0\left( {(4a \times 1) - (1 \times 3b)} \right)$
$ \Rightarrow 2a(a - b) = 0$
But, $a$ cannot be $0$ as lines 1 and 3 becomes identical.
$ \Rightarrow a - b = 0$
Hence,$(a,b)$ lies on the line $x - y = 0$
So option C is the correct answer.
Note: - In such a type of question we have to always apply the property that is given as a hint in question. In this question the hint is concurrence of lines. So we apply the property of concurrence of line to get the relation between the points where they lie.
We know that when the lines are concurrent it means that the determinant of the coefficient of the line must be zero.
Here the given equation of lines are
\[x + 2ay + a = 0\]
\[x + 3by + b = 0\]
\[x + 4ay + a = 0\]
By the property of concurrence of line,
$\left| \begin{gathered}
1{\text{ 2a a}} \\
{\text{1 3b b}} \\
{\text{1 4a a}} \\
\end{gathered} \right| = 0$
By applying row transformation \[{R_{1}} \to {R_{1}} - {R_3}\]
$\left| \begin{gathered}
{\text{0 }} - {\text{2a 0}} \\
{\text{1 3b b}} \\
{\text{1 4a a}} \\
\end{gathered} \right| = 0$
And now we open the determinant and the formula for opening the determinant is
\[0 \cdot \left| \begin{gathered}
3{\text{b b}} \\
{\text{4a a}} \\
\end{gathered} \right| - ( - 2{\text{a)}} \cdot \left| \begin{gathered}
1{\text{ b}} \\
{\text{1 a}} \\
\end{gathered} \right| + 0 \cdot \left| \begin{gathered}
1{\text{ 3b}} \\
{\text{1 4a}} \\
\end{gathered} \right| = 0\]
$0\left( {(a \times 3b) - (4a \times b)} \right) - ( - 2a)\left( {(a \times 1) - (b \times 1)} \right) + 0\left( {(4a \times 1) - (1 \times 3b)} \right)$
$ \Rightarrow 2a(a - b) = 0$
But, $a$ cannot be $0$ as lines 1 and 3 becomes identical.
$ \Rightarrow a - b = 0$
Hence,$(a,b)$ lies on the line $x - y = 0$
So option C is the correct answer.
Note: - In such a type of question we have to always apply the property that is given as a hint in question. In this question the hint is concurrence of lines. So we apply the property of concurrence of line to get the relation between the points where they lie.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
What will happen when any type of copper vessel is class 11 chemistry CBSE