Answer
Verified
389.1k+ views
Hint: To find the relation among the given number we will use the relation given between $a,b,c$. As we know in an A.P the difference between consecutive terms is the same so we will use this property and get a relation between $a,b,c$. Then we will assume that the given terms ${{2}^{ax+1}},{{2}^{bx+1}},{{2}^{cx+1}},x\ne 0$ are in G.P. Then we will prove our assumption by checking whether the terms satisfy the condition of a G.P and get our desired answer.
Complete step-by-step solution:
It is given to us that $a,b,c$ is an A.P.
We know difference between consecutive terms is same so,
$\begin{align}
& b-a=c-b \\
& \Rightarrow b+b=a+c \\
\end{align}$
$2b=a+c$….$\left( 1 \right)$
Now as we have to find relation between ${{2}^{ax+1}},{{2}^{2bx+1}},{{2}^{cx+1}},x\ne 0$,
Let us assume these are in G.P so for that they should satisfy equation of G.P which states that:
${{B}^{2}}=AC$….$\left( 2 \right)$
Substitute the following in equation (2):
$\begin{align}
& A={{2}^{ax+1}} \\
& B={{2}^{bx+1}} \\
& C={{2}^{cx+1}} \\
\end{align}$
So we get,
$\begin{align}
& {{\left( {{2}^{bx+1}} \right)}^{2}}={{2}^{ax+1}}\times {{2}^{cx+1}} \\
& \Rightarrow {{2}^{2bx+2}}={{2}^{ax+1}}\times {{2}^{cx+1}} \\
\end{align}$
Put value from equation (1) on left hand side of above value we get,
$\begin{align}
& {{2}^{\left( a+c \right)x+2}}={{2}^{2ax+1}}\times {{2}^{cx+1}} \\
& \Rightarrow {{2}^{ax+cx+2}}={{2}^{2ax+1}}\times {{2}^{cx+1}} \\
& \Rightarrow {{2}^{ax+1}}\times {{2}^{cx+1}}={{2}^{2ax+1}}\times {{2}^{cx+1}} \\
\end{align}$
So we get the right hand side equal to the left hand side so our assumption is right.
So the terms ${{2}^{ax+1}},{{2}^{2bx+1}},{{2}^{cx+1}}$ are in G.P for all $x\ne 0$
Hence correct option is (D).
Note: A progression is a sequence of numbers that follow a specific pattern. A.P is also known as Arithmetic progression which means that the difference between consecutive terms of a sequence is constant. G.P is also known as Geometric Progression; it is a sequence where each succeeding term is equal to the multiplication of preceding term by a fixed number which is also known as common ratio.
Complete step-by-step solution:
It is given to us that $a,b,c$ is an A.P.
We know difference between consecutive terms is same so,
$\begin{align}
& b-a=c-b \\
& \Rightarrow b+b=a+c \\
\end{align}$
$2b=a+c$….$\left( 1 \right)$
Now as we have to find relation between ${{2}^{ax+1}},{{2}^{2bx+1}},{{2}^{cx+1}},x\ne 0$,
Let us assume these are in G.P so for that they should satisfy equation of G.P which states that:
${{B}^{2}}=AC$….$\left( 2 \right)$
Substitute the following in equation (2):
$\begin{align}
& A={{2}^{ax+1}} \\
& B={{2}^{bx+1}} \\
& C={{2}^{cx+1}} \\
\end{align}$
So we get,
$\begin{align}
& {{\left( {{2}^{bx+1}} \right)}^{2}}={{2}^{ax+1}}\times {{2}^{cx+1}} \\
& \Rightarrow {{2}^{2bx+2}}={{2}^{ax+1}}\times {{2}^{cx+1}} \\
\end{align}$
Put value from equation (1) on left hand side of above value we get,
$\begin{align}
& {{2}^{\left( a+c \right)x+2}}={{2}^{2ax+1}}\times {{2}^{cx+1}} \\
& \Rightarrow {{2}^{ax+cx+2}}={{2}^{2ax+1}}\times {{2}^{cx+1}} \\
& \Rightarrow {{2}^{ax+1}}\times {{2}^{cx+1}}={{2}^{2ax+1}}\times {{2}^{cx+1}} \\
\end{align}$
So we get the right hand side equal to the left hand side so our assumption is right.
So the terms ${{2}^{ax+1}},{{2}^{2bx+1}},{{2}^{cx+1}}$ are in G.P for all $x\ne 0$
Hence correct option is (D).
Note: A progression is a sequence of numbers that follow a specific pattern. A.P is also known as Arithmetic progression which means that the difference between consecutive terms of a sequence is constant. G.P is also known as Geometric Progression; it is a sequence where each succeeding term is equal to the multiplication of preceding term by a fixed number which is also known as common ratio.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE