Answer
Verified
471k+ views
Hint: Here we will proceed the solution by finding tangent to the ellipse and chord of contact to the circle.
Given ellipse is${x^2} + 2y = 1$
It tangent is at point $P\left( {\frac{1}{{\sqrt 2 }},\frac{1}{2}} \right)$
We know that equation of tangent to the ellipse at point $p({x_1}{y_1})$is $x{x_1} + y{y_1} = 1$
If we consider the points in $P\left( {\frac{1}{{\sqrt 2 }},\frac{1}{2}} \right)$ as ${x_1}{y_1}$
Then equation of tangent to the ellipse at point P is
$
\Rightarrow x\left( {\frac{1}{{\sqrt 2 }}} \right) + 2y\left( {\frac{1}{2}} \right) = 1 \\
\\
$
$ \Rightarrow x + \sqrt 2 y = 1$ $ \to (1)$
Now QR is the chord of contact of circle${x^2} + {y^2} = 1$ at the point $T(h,k)$
Then, Chord of contact QR$ \equiv hx + ky = 1$$ \to (2)$
Here equation $(1)$ and$(2)$ represents two Straight lines
Now let us compare the coefficient in the ratio form, then we have
$ \Rightarrow $$\frac{h}{1} = \frac{k}{{\sqrt 2 }} = \frac{1}{{\sqrt 2 }}$
From this we can say that Q and R intersect at point T (h, k)
Where (h, k) = $\left( {\frac{1}{{\sqrt 2 }},1} \right)$
$\therefore (h,k) = \left( {\frac{1}{{\sqrt 2 }},1} \right)$
Option A is Correct
NOTE: Here we will ignore finding the chord of contact to the circle as it is not directly mentioned in the question as tangent to the ellipse mentioned.
Given ellipse is${x^2} + 2y = 1$
It tangent is at point $P\left( {\frac{1}{{\sqrt 2 }},\frac{1}{2}} \right)$
We know that equation of tangent to the ellipse at point $p({x_1}{y_1})$is $x{x_1} + y{y_1} = 1$
If we consider the points in $P\left( {\frac{1}{{\sqrt 2 }},\frac{1}{2}} \right)$ as ${x_1}{y_1}$
Then equation of tangent to the ellipse at point P is
$
\Rightarrow x\left( {\frac{1}{{\sqrt 2 }}} \right) + 2y\left( {\frac{1}{2}} \right) = 1 \\
\\
$
$ \Rightarrow x + \sqrt 2 y = 1$ $ \to (1)$
Now QR is the chord of contact of circle${x^2} + {y^2} = 1$ at the point $T(h,k)$
Then, Chord of contact QR$ \equiv hx + ky = 1$$ \to (2)$
Here equation $(1)$ and$(2)$ represents two Straight lines
Now let us compare the coefficient in the ratio form, then we have
$ \Rightarrow $$\frac{h}{1} = \frac{k}{{\sqrt 2 }} = \frac{1}{{\sqrt 2 }}$
From this we can say that Q and R intersect at point T (h, k)
Where (h, k) = $\left( {\frac{1}{{\sqrt 2 }},1} \right)$
$\therefore (h,k) = \left( {\frac{1}{{\sqrt 2 }},1} \right)$
Option A is Correct
NOTE: Here we will ignore finding the chord of contact to the circle as it is not directly mentioned in the question as tangent to the ellipse mentioned.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Name 10 Living and Non living things class 9 biology CBSE