If the sum of m terms of an A.P. is the same as the sum of its n terms, show that the sum of its (m + n) terms is zero.
Answer
Verified
506.1k+ views
Hint: Let us assume a variable $a$ which represents the first term of the arithmetic progression, a variable $d$ which represents the common difference of the arithmetic progression. The sum of r terms of this arithmetic progression is given by the formula ${{S}_{r}}=\dfrac{r}{2}\left( 2a+\left( r-1 \right)d \right)$. Using this formula, we can solve this question.
Complete step-by-step answer:
Before proceeding with the question, we must know the formula that will be required to solve this question.
In arithmetic progression, if we have an arithmetic progression with its first term equal to a and its common difference equal to d, then, the sum of its first r terms is given by the formula,
${{S}_{r}}=\dfrac{r}{2}\left( 2a+\left( r-1 \right)d \right)$ . . . . . . . . . . (1)
In this question, it is given that the sum of m terms of an A.P. is the same as the sum of its n terms and we have to show that the sum of its (m + n) terms is zero.
Let us assume an A.P. with its first term as a and common difference as d. Using formula (1), the sum of m terms of this A.P. is equal to,
${{S}_{m}}=\dfrac{m}{2}\left( 2a+\left( m-1 \right)d \right)$ . . . . . . . . . . . . (2)
Using formula (1), the sum of n terms of this A.P. is equal to,
${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$ . . . . . . . . . . . . (3)
Since in the question, it is given ${{S}_{m}}={{S}_{n}}$, from equation (2) and (3), we get,
\[\begin{align}
& \dfrac{m}{2}\left( 2a+\left( m-1 \right)d \right)=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right) \\
& \Rightarrow m\left( 2a+\left( m-1 \right)d \right)=n\left( 2a+\left( n-1 \right)d \right) \\
& \Rightarrow 2am+{{m}^{2}}d-md=2an+{{n}^{2}}d-nd \\
& \Rightarrow 2am-2an+{{m}^{2}}d-{{n}^{2}}d-md+nd=0 \\
& \Rightarrow 2a\left( m-n \right)+\left( {{m}^{2}}-{{n}^{2}} \right)d-d\left( m-n \right)=0 \\
\end{align}\]
There is a formula ${{m}^{2}}-{{n}^{2}}=\left( m-n \right)\left( m+n \right)$. Substituting this formula in the above equation, we get,
\[\begin{align}
& 2a\left( m-n \right)+\left( m-n \right)\left( m+n \right)d-d\left( m-n \right)=0 \\
& \Rightarrow \left( m-n \right)\left( 2a+\left( m+n \right)d-d \right)=0 \\
& \Rightarrow \left( m-n \right)\left( 2a+\left( m+n-1 \right)d \right)=0 \\
& \Rightarrow \left( 2a+\left( m+n-1 \right)d \right)=0..................\left( 4 \right) \\
\end{align}\]
Using formula (1), the sum of (m + n) terms is equal to,
${{S}_{m+n}}=\dfrac{\left( m+n \right)}{2}\left( 2a+\left( m+n-1 \right)d \right)$
From equation (4), substituting \[\left( 2a+\left( m+n-1 \right)d \right)=0\] in the above equation, we get,
$\begin{align}
& {{S}_{m+n}}=\dfrac{\left( m+n \right)}{2}\left( 0 \right) \\
& \Rightarrow {{S}_{m+n}}=0 \\
\end{align}$
Hence, we have proved that the sum of (m + n) terms of this A.P. is zero.
Note: In the equation (4), we can cancel the factor (m - n) only when $m-n\ne 0$. Since this question, m and n are written separately, we can assume that m and n are different and hence, we can say $m-n\ne 0$.
Complete step-by-step answer:
Before proceeding with the question, we must know the formula that will be required to solve this question.
In arithmetic progression, if we have an arithmetic progression with its first term equal to a and its common difference equal to d, then, the sum of its first r terms is given by the formula,
${{S}_{r}}=\dfrac{r}{2}\left( 2a+\left( r-1 \right)d \right)$ . . . . . . . . . . (1)
In this question, it is given that the sum of m terms of an A.P. is the same as the sum of its n terms and we have to show that the sum of its (m + n) terms is zero.
Let us assume an A.P. with its first term as a and common difference as d. Using formula (1), the sum of m terms of this A.P. is equal to,
${{S}_{m}}=\dfrac{m}{2}\left( 2a+\left( m-1 \right)d \right)$ . . . . . . . . . . . . (2)
Using formula (1), the sum of n terms of this A.P. is equal to,
${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$ . . . . . . . . . . . . (3)
Since in the question, it is given ${{S}_{m}}={{S}_{n}}$, from equation (2) and (3), we get,
\[\begin{align}
& \dfrac{m}{2}\left( 2a+\left( m-1 \right)d \right)=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right) \\
& \Rightarrow m\left( 2a+\left( m-1 \right)d \right)=n\left( 2a+\left( n-1 \right)d \right) \\
& \Rightarrow 2am+{{m}^{2}}d-md=2an+{{n}^{2}}d-nd \\
& \Rightarrow 2am-2an+{{m}^{2}}d-{{n}^{2}}d-md+nd=0 \\
& \Rightarrow 2a\left( m-n \right)+\left( {{m}^{2}}-{{n}^{2}} \right)d-d\left( m-n \right)=0 \\
\end{align}\]
There is a formula ${{m}^{2}}-{{n}^{2}}=\left( m-n \right)\left( m+n \right)$. Substituting this formula in the above equation, we get,
\[\begin{align}
& 2a\left( m-n \right)+\left( m-n \right)\left( m+n \right)d-d\left( m-n \right)=0 \\
& \Rightarrow \left( m-n \right)\left( 2a+\left( m+n \right)d-d \right)=0 \\
& \Rightarrow \left( m-n \right)\left( 2a+\left( m+n-1 \right)d \right)=0 \\
& \Rightarrow \left( 2a+\left( m+n-1 \right)d \right)=0..................\left( 4 \right) \\
\end{align}\]
Using formula (1), the sum of (m + n) terms is equal to,
${{S}_{m+n}}=\dfrac{\left( m+n \right)}{2}\left( 2a+\left( m+n-1 \right)d \right)$
From equation (4), substituting \[\left( 2a+\left( m+n-1 \right)d \right)=0\] in the above equation, we get,
$\begin{align}
& {{S}_{m+n}}=\dfrac{\left( m+n \right)}{2}\left( 0 \right) \\
& \Rightarrow {{S}_{m+n}}=0 \\
\end{align}$
Hence, we have proved that the sum of (m + n) terms of this A.P. is zero.
Note: In the equation (4), we can cancel the factor (m - n) only when $m-n\ne 0$. Since this question, m and n are written separately, we can assume that m and n are different and hence, we can say $m-n\ne 0$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE