Answer
Verified
465.9k+ views
Hint: Use the formulas of sequences and series to find the sum of $n$ natural numbers and their squares. Substitute these formulas in the equation which can be obtained by reading the question and then find the value of $n$.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas of the sequences and series which will be required to solve this question.
We have a formula from which, the sum of first $r$ natural numbers (denoted by $\sum{r}$) is given by,
$\sum{r=\dfrac{r\left( r+1 \right)}{2}}....................\left( 1 \right)$
Also, we have a formula from which, the sum of the squares first $r$ natural number (denoted by $\sum{{{r}^{2}}}$) is given by,
$\sum{{{r}^{2}}=\dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6}................\left( 2 \right)}$
In the question, it is given that the sum of the first $n$ natural number is one-fifth of the sum of their squares.
$\Rightarrow $ sum of first $n$ natural numbers $=$ $\dfrac{1}{5}\times $ sum of squares of first $n$ natural numbers
$\Rightarrow $$\sum{n}=\dfrac{1}{5}\sum{{{n}^{2}}.................\left( 3 \right)}$
Substituting $r=n$ in formula $\left( 1 \right)$, the sum of first $n$ natural numbers is equal to,
$\sum{n=\dfrac{n\left( n+1 \right)}{2}}....................\left( 4 \right)$
Substituting $r=n$ in formula $\left( 2 \right)$, the sum of the squares of first $n$ natural numbers is equal to,
$\sum{{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}................\left( 5 \right)}$
Substituting $\sum{n}$ from equation $\left( 4 \right)$ and $\sum{{{n}^{2}}}$ from equation $\left( 5 \right)$ in equation $\left( 3 \right)$, we get,
$\dfrac{n\left( n+1 \right)}{2}=\dfrac{1}{5}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)$
Cancelling $n\left( n+1 \right)$ on both the sides of the above equation, we get,
$\begin{align}
& \dfrac{1}{2}=\dfrac{\left( 2n+1 \right)}{30} \\
& \Rightarrow 15=2n+1 \\
& \Rightarrow 2n=14 \\
& \Rightarrow n=7 \\
\end{align}$
Hence, the answer is option (c).
Note: There is a possibility that one may make a mistake while applying the formula for sum of the first $n$ natural number. It is a very common mistake that one uses the formula as $\sum{n=\dfrac{n\left( n-1 \right)}{2}}$ instead of the formula $\sum{n=\dfrac{n\left( n+1 \right)}{2}}$. This may lead us to an incorrect answer.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas of the sequences and series which will be required to solve this question.
We have a formula from which, the sum of first $r$ natural numbers (denoted by $\sum{r}$) is given by,
$\sum{r=\dfrac{r\left( r+1 \right)}{2}}....................\left( 1 \right)$
Also, we have a formula from which, the sum of the squares first $r$ natural number (denoted by $\sum{{{r}^{2}}}$) is given by,
$\sum{{{r}^{2}}=\dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6}................\left( 2 \right)}$
In the question, it is given that the sum of the first $n$ natural number is one-fifth of the sum of their squares.
$\Rightarrow $ sum of first $n$ natural numbers $=$ $\dfrac{1}{5}\times $ sum of squares of first $n$ natural numbers
$\Rightarrow $$\sum{n}=\dfrac{1}{5}\sum{{{n}^{2}}.................\left( 3 \right)}$
Substituting $r=n$ in formula $\left( 1 \right)$, the sum of first $n$ natural numbers is equal to,
$\sum{n=\dfrac{n\left( n+1 \right)}{2}}....................\left( 4 \right)$
Substituting $r=n$ in formula $\left( 2 \right)$, the sum of the squares of first $n$ natural numbers is equal to,
$\sum{{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}................\left( 5 \right)}$
Substituting $\sum{n}$ from equation $\left( 4 \right)$ and $\sum{{{n}^{2}}}$ from equation $\left( 5 \right)$ in equation $\left( 3 \right)$, we get,
$\dfrac{n\left( n+1 \right)}{2}=\dfrac{1}{5}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)$
Cancelling $n\left( n+1 \right)$ on both the sides of the above equation, we get,
$\begin{align}
& \dfrac{1}{2}=\dfrac{\left( 2n+1 \right)}{30} \\
& \Rightarrow 15=2n+1 \\
& \Rightarrow 2n=14 \\
& \Rightarrow n=7 \\
\end{align}$
Hence, the answer is option (c).
Note: There is a possibility that one may make a mistake while applying the formula for sum of the first $n$ natural number. It is a very common mistake that one uses the formula as $\sum{n=\dfrac{n\left( n-1 \right)}{2}}$ instead of the formula $\sum{n=\dfrac{n\left( n+1 \right)}{2}}$. This may lead us to an incorrect answer.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE