If the sum of first $n$ natural number is one-fifth of the sum of their squares, then $n$ is,
(a) $5$
(b) $6$
(c) $7$
(d) $8$
Answer
Verified
505.2k+ views
Hint: Use the formulas of sequences and series to find the sum of $n$ natural numbers and their squares. Substitute these formulas in the equation which can be obtained by reading the question and then find the value of $n$.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas of the sequences and series which will be required to solve this question.
We have a formula from which, the sum of first $r$ natural numbers (denoted by $\sum{r}$) is given by,
$\sum{r=\dfrac{r\left( r+1 \right)}{2}}....................\left( 1 \right)$
Also, we have a formula from which, the sum of the squares first $r$ natural number (denoted by $\sum{{{r}^{2}}}$) is given by,
$\sum{{{r}^{2}}=\dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6}................\left( 2 \right)}$
In the question, it is given that the sum of the first $n$ natural number is one-fifth of the sum of their squares.
$\Rightarrow $ sum of first $n$ natural numbers $=$ $\dfrac{1}{5}\times $ sum of squares of first $n$ natural numbers
$\Rightarrow $$\sum{n}=\dfrac{1}{5}\sum{{{n}^{2}}.................\left( 3 \right)}$
Substituting $r=n$ in formula $\left( 1 \right)$, the sum of first $n$ natural numbers is equal to,
$\sum{n=\dfrac{n\left( n+1 \right)}{2}}....................\left( 4 \right)$
Substituting $r=n$ in formula $\left( 2 \right)$, the sum of the squares of first $n$ natural numbers is equal to,
$\sum{{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}................\left( 5 \right)}$
Substituting $\sum{n}$ from equation $\left( 4 \right)$ and $\sum{{{n}^{2}}}$ from equation $\left( 5 \right)$ in equation $\left( 3 \right)$, we get,
$\dfrac{n\left( n+1 \right)}{2}=\dfrac{1}{5}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)$
Cancelling $n\left( n+1 \right)$ on both the sides of the above equation, we get,
$\begin{align}
& \dfrac{1}{2}=\dfrac{\left( 2n+1 \right)}{30} \\
& \Rightarrow 15=2n+1 \\
& \Rightarrow 2n=14 \\
& \Rightarrow n=7 \\
\end{align}$
Hence, the answer is option (c).
Note: There is a possibility that one may make a mistake while applying the formula for sum of the first $n$ natural number. It is a very common mistake that one uses the formula as $\sum{n=\dfrac{n\left( n-1 \right)}{2}}$ instead of the formula $\sum{n=\dfrac{n\left( n+1 \right)}{2}}$. This may lead us to an incorrect answer.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas of the sequences and series which will be required to solve this question.
We have a formula from which, the sum of first $r$ natural numbers (denoted by $\sum{r}$) is given by,
$\sum{r=\dfrac{r\left( r+1 \right)}{2}}....................\left( 1 \right)$
Also, we have a formula from which, the sum of the squares first $r$ natural number (denoted by $\sum{{{r}^{2}}}$) is given by,
$\sum{{{r}^{2}}=\dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6}................\left( 2 \right)}$
In the question, it is given that the sum of the first $n$ natural number is one-fifth of the sum of their squares.
$\Rightarrow $ sum of first $n$ natural numbers $=$ $\dfrac{1}{5}\times $ sum of squares of first $n$ natural numbers
$\Rightarrow $$\sum{n}=\dfrac{1}{5}\sum{{{n}^{2}}.................\left( 3 \right)}$
Substituting $r=n$ in formula $\left( 1 \right)$, the sum of first $n$ natural numbers is equal to,
$\sum{n=\dfrac{n\left( n+1 \right)}{2}}....................\left( 4 \right)$
Substituting $r=n$ in formula $\left( 2 \right)$, the sum of the squares of first $n$ natural numbers is equal to,
$\sum{{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}................\left( 5 \right)}$
Substituting $\sum{n}$ from equation $\left( 4 \right)$ and $\sum{{{n}^{2}}}$ from equation $\left( 5 \right)$ in equation $\left( 3 \right)$, we get,
$\dfrac{n\left( n+1 \right)}{2}=\dfrac{1}{5}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)$
Cancelling $n\left( n+1 \right)$ on both the sides of the above equation, we get,
$\begin{align}
& \dfrac{1}{2}=\dfrac{\left( 2n+1 \right)}{30} \\
& \Rightarrow 15=2n+1 \\
& \Rightarrow 2n=14 \\
& \Rightarrow n=7 \\
\end{align}$
Hence, the answer is option (c).
Note: There is a possibility that one may make a mistake while applying the formula for sum of the first $n$ natural number. It is a very common mistake that one uses the formula as $\sum{n=\dfrac{n\left( n-1 \right)}{2}}$ instead of the formula $\sum{n=\dfrac{n\left( n+1 \right)}{2}}$. This may lead us to an incorrect answer.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE