
If the sum of first $n$ natural number is one-fifth of the sum of their squares, then $n$ is,
(a) $5$
(b) $6$
(c) $7$
(d) $8$
Answer
602.1k+ views
Hint: Use the formulas of sequences and series to find the sum of $n$ natural numbers and their squares. Substitute these formulas in the equation which can be obtained by reading the question and then find the value of $n$.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas of the sequences and series which will be required to solve this question.
We have a formula from which, the sum of first $r$ natural numbers (denoted by $\sum{r}$) is given by,
$\sum{r=\dfrac{r\left( r+1 \right)}{2}}....................\left( 1 \right)$
Also, we have a formula from which, the sum of the squares first $r$ natural number (denoted by $\sum{{{r}^{2}}}$) is given by,
$\sum{{{r}^{2}}=\dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6}................\left( 2 \right)}$
In the question, it is given that the sum of the first $n$ natural number is one-fifth of the sum of their squares.
$\Rightarrow $ sum of first $n$ natural numbers $=$ $\dfrac{1}{5}\times $ sum of squares of first $n$ natural numbers
$\Rightarrow $$\sum{n}=\dfrac{1}{5}\sum{{{n}^{2}}.................\left( 3 \right)}$
Substituting $r=n$ in formula $\left( 1 \right)$, the sum of first $n$ natural numbers is equal to,
$\sum{n=\dfrac{n\left( n+1 \right)}{2}}....................\left( 4 \right)$
Substituting $r=n$ in formula $\left( 2 \right)$, the sum of the squares of first $n$ natural numbers is equal to,
$\sum{{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}................\left( 5 \right)}$
Substituting $\sum{n}$ from equation $\left( 4 \right)$ and $\sum{{{n}^{2}}}$ from equation $\left( 5 \right)$ in equation $\left( 3 \right)$, we get,
$\dfrac{n\left( n+1 \right)}{2}=\dfrac{1}{5}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)$
Cancelling $n\left( n+1 \right)$ on both the sides of the above equation, we get,
$\begin{align}
& \dfrac{1}{2}=\dfrac{\left( 2n+1 \right)}{30} \\
& \Rightarrow 15=2n+1 \\
& \Rightarrow 2n=14 \\
& \Rightarrow n=7 \\
\end{align}$
Hence, the answer is option (c).
Note: There is a possibility that one may make a mistake while applying the formula for sum of the first $n$ natural number. It is a very common mistake that one uses the formula as $\sum{n=\dfrac{n\left( n-1 \right)}{2}}$ instead of the formula $\sum{n=\dfrac{n\left( n+1 \right)}{2}}$. This may lead us to an incorrect answer.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas of the sequences and series which will be required to solve this question.
We have a formula from which, the sum of first $r$ natural numbers (denoted by $\sum{r}$) is given by,
$\sum{r=\dfrac{r\left( r+1 \right)}{2}}....................\left( 1 \right)$
Also, we have a formula from which, the sum of the squares first $r$ natural number (denoted by $\sum{{{r}^{2}}}$) is given by,
$\sum{{{r}^{2}}=\dfrac{r\left( r+1 \right)\left( 2r+1 \right)}{6}................\left( 2 \right)}$
In the question, it is given that the sum of the first $n$ natural number is one-fifth of the sum of their squares.
$\Rightarrow $ sum of first $n$ natural numbers $=$ $\dfrac{1}{5}\times $ sum of squares of first $n$ natural numbers
$\Rightarrow $$\sum{n}=\dfrac{1}{5}\sum{{{n}^{2}}.................\left( 3 \right)}$
Substituting $r=n$ in formula $\left( 1 \right)$, the sum of first $n$ natural numbers is equal to,
$\sum{n=\dfrac{n\left( n+1 \right)}{2}}....................\left( 4 \right)$
Substituting $r=n$ in formula $\left( 2 \right)$, the sum of the squares of first $n$ natural numbers is equal to,
$\sum{{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}................\left( 5 \right)}$
Substituting $\sum{n}$ from equation $\left( 4 \right)$ and $\sum{{{n}^{2}}}$ from equation $\left( 5 \right)$ in equation $\left( 3 \right)$, we get,
$\dfrac{n\left( n+1 \right)}{2}=\dfrac{1}{5}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)$
Cancelling $n\left( n+1 \right)$ on both the sides of the above equation, we get,
$\begin{align}
& \dfrac{1}{2}=\dfrac{\left( 2n+1 \right)}{30} \\
& \Rightarrow 15=2n+1 \\
& \Rightarrow 2n=14 \\
& \Rightarrow n=7 \\
\end{align}$
Hence, the answer is option (c).
Note: There is a possibility that one may make a mistake while applying the formula for sum of the first $n$ natural number. It is a very common mistake that one uses the formula as $\sum{n=\dfrac{n\left( n-1 \right)}{2}}$ instead of the formula $\sum{n=\dfrac{n\left( n+1 \right)}{2}}$. This may lead us to an incorrect answer.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

