
If the shortest wavelength in Lyman series of hydrogen atom is A, then the longest wavelength in Paschen series of \[H{e^ + }\] is:
A. \[\dfrac{{36A}}{7}\]
B. \[\dfrac{{5A}}{9}\]
C. \[\dfrac{{36A}}{5}\]
D. \[\dfrac{{9A}}{5}\]
Answer
546.3k+ views
Hint: Use the Rydberg formula to solve this question which gives the relation of the energy difference between various levels of Bohr’s model and wavelength absorbed by the photon or emitted. The shortest wavelength in hydrogen atoms of the Lyman series is from \[{n_1} = 1 \to {n_2} = \infty \]. The longest wavelength in the Paschen series of helium ions is from \[{n_1} = 3 \to {n_2} = 4\].
Complete step by step answer:
The spectral series are defined as the set of wavelengths arranged in a sequential fashion. The spectral series characterizes light or electromagnetic radiation which is emitted by energized atoms.
The Rydberg formula gives the relation of the energy difference between various levels of Bohr’s model and wavelength absorbed by the photon or emitted.
The Rydberg formula is given as shown below.
\[\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{n_l^2}} - \dfrac{1}{{n_h^2}}} \right)\]
Where,
\[\lambda \] is the wavelength
R is the Rydberg constant
Z is the atomic number
\[{n_l}\] is the lower energy level.
\[{n_h}\] is a higher energy level.
The shortest wavelength in hydrogen atom of Lyman series is from \[{n_1} = 1 \to {n_2} = \infty \]
Given that the shortest wavelength of hydrogen atom in the Lyman series is A.
Substitute the values in the formula as shown below.
\[ \Rightarrow \dfrac{1}{A} = R\left( {\dfrac{1}{1} - \dfrac{1}{\infty }} \right){1^2}\]
\[ \Rightarrow \dfrac{1}{A} = R\]
The longest wavelength in the Paschen series of helium ions is from \[{n_1} = 3 \to {n_2} = 4\].
To calculate the longest wavelength in Paschen series, substitute the values in the formula as shown below.
\[ \Rightarrow \dfrac{1}{{\lambda '}} = R\left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}} \right){2^2}\]
\[ \Rightarrow \dfrac{1}{{\lambda '}} = \dfrac{4}{A}\left( {\dfrac{1}{9} - \dfrac{1}{{16}}} \right)\]
\[ \Rightarrow \dfrac{1}{{\lambda '}} = \dfrac{4}{A} \times \dfrac{7}{{144}}\]
\[ \Rightarrow \lambda ' = \dfrac{{144A}}{{28}}\]
\[ \Rightarrow \lambda ' = \dfrac{{36A}}{7}\]
So, the correct answer is Option A.
Note: All the wavelengths in the Lyman series come under the Ultraviolet band of the electromagnetic spectrum. All the wavelength in the Paschen series comes under the infrared region of the electromagnetic spectrum.
Complete step by step answer:
The spectral series are defined as the set of wavelengths arranged in a sequential fashion. The spectral series characterizes light or electromagnetic radiation which is emitted by energized atoms.
The Rydberg formula gives the relation of the energy difference between various levels of Bohr’s model and wavelength absorbed by the photon or emitted.
The Rydberg formula is given as shown below.
\[\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{n_l^2}} - \dfrac{1}{{n_h^2}}} \right)\]
Where,
\[\lambda \] is the wavelength
R is the Rydberg constant
Z is the atomic number
\[{n_l}\] is the lower energy level.
\[{n_h}\] is a higher energy level.
The shortest wavelength in hydrogen atom of Lyman series is from \[{n_1} = 1 \to {n_2} = \infty \]
Given that the shortest wavelength of hydrogen atom in the Lyman series is A.
Substitute the values in the formula as shown below.
\[ \Rightarrow \dfrac{1}{A} = R\left( {\dfrac{1}{1} - \dfrac{1}{\infty }} \right){1^2}\]
\[ \Rightarrow \dfrac{1}{A} = R\]
The longest wavelength in the Paschen series of helium ions is from \[{n_1} = 3 \to {n_2} = 4\].
To calculate the longest wavelength in Paschen series, substitute the values in the formula as shown below.
\[ \Rightarrow \dfrac{1}{{\lambda '}} = R\left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}} \right){2^2}\]
\[ \Rightarrow \dfrac{1}{{\lambda '}} = \dfrac{4}{A}\left( {\dfrac{1}{9} - \dfrac{1}{{16}}} \right)\]
\[ \Rightarrow \dfrac{1}{{\lambda '}} = \dfrac{4}{A} \times \dfrac{7}{{144}}\]
\[ \Rightarrow \lambda ' = \dfrac{{144A}}{{28}}\]
\[ \Rightarrow \lambda ' = \dfrac{{36A}}{7}\]
So, the correct answer is Option A.
Note: All the wavelengths in the Lyman series come under the Ultraviolet band of the electromagnetic spectrum. All the wavelength in the Paschen series comes under the infrared region of the electromagnetic spectrum.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

