
If the salts ${M_2}X$, $Q{Y_2}$ and $P{Z_3}$ have the same solubilities, their ${K_{sp}}$ values are related as – (S<1)
A)${K_{sp}}({M_2}X) = {K_{sp}}(Q{Y_2})$
B) ${K_{sp}}({M_2}X) > {K_{sp}}(Q{Y_2}) = {K_{sp}}(P{Z_3})$
C) ${K_{sp}}({M_2}X) = {K_{sp}}(Q{Y_2}) > {K_{sp}}(P{Z_3})$
D) ${K_{sp}}({M_2}X) > {K_{sp}}(Q{Y_2}) > {K_{sp}}(P{Z_3})$
Answer
512.1k+ views
Hint: Recall the relationship between solubility product and solubility. Write individually the dissolution reaction of each salt given in the question and then find their ${K_{sp}}$ values. To find ${K_{sp}}$ values, take product of the concentrations of the products, each raised to the power of their stoichiometric coefficient. Also, multiply the concentration by their respective coefficient.
Complete step by step solution:
Consider the general reaction: $aA \rightleftharpoons cC + dD$
Now, if we solve ${K_{sp}}$ for the above reaction, it will be as follows:
${K_{sp}} = {[cC]^c}{[dD]^d}$
Therefore, to solve ${K_{sp}}$ of each salt, we need to take the product of the concentrations of the products, each raise to the power of their stoichiometric constant and also multiply concentration by their respective stoichiometric coefficient.
Now, coming to our given salts ${M_2}X$, $Q{Y_2}$ and $P{Z_3}$. It is given that they have the same solubilities, so let it be $S$. Now their ${K_{sp}}$ values will be as follows:
Dissolution of salt ${M_2}X$:
${M_2}X \rightleftharpoons 2M + X$
${K_{sp}}({M_2}X) = {(2S)^2}S = 4{S^3}$
Dissolution of salt $Q{Y_2}$:
$Q{Y_2} \rightleftharpoons Q + 2Y$
Therefore, ${K_{sp}}(Q{Y_2}) = S{(2S)^2} = 4{S^3}$
Dissolution of salt $P{Z_3}$:
$P{Z_3} \rightleftharpoons P + 3Z$
${K_{sp}}(P{Z_3}) = S{(3S)^3} = 27{S^4}$
Now, find the relationship between above calculated solubility products.
As you can see value of ${K_{sp}}({M_2}X) = {K_{sp}}(Q{Y_2})$ and value of ${K_{sp}}(P{Z_3})$ will be lesser than ${K_{sp}}({M_2}X) = {K_{sp}}(Q{Y_2})$ because a condition is given in the question that, S < 1.
Therefore, the relation between the solubility products is as follows:
${K_{sp}}({M_2}X) = {K_{sp}}(Q{Y_2}) > {K_{sp}}(P{Z_3})$
Thus, option C is the correct answer.
Note: It should be noted that solids are not included while calculating solubility product values. Solubility product (${K_{sp}}$) represents the maximum extent to which a solid can be dissolved in a solution. Higher the value of ${K_{sp}}$ for a substance, more is its solubility. Thus, we can say that salts ${M_2}X$ and $Q{Y_2}$ are more soluble than salt $P{Z_3}$.
Complete step by step solution:
Consider the general reaction: $aA \rightleftharpoons cC + dD$
Now, if we solve ${K_{sp}}$ for the above reaction, it will be as follows:
${K_{sp}} = {[cC]^c}{[dD]^d}$
Therefore, to solve ${K_{sp}}$ of each salt, we need to take the product of the concentrations of the products, each raise to the power of their stoichiometric constant and also multiply concentration by their respective stoichiometric coefficient.
Now, coming to our given salts ${M_2}X$, $Q{Y_2}$ and $P{Z_3}$. It is given that they have the same solubilities, so let it be $S$. Now their ${K_{sp}}$ values will be as follows:
Dissolution of salt ${M_2}X$:
${M_2}X \rightleftharpoons 2M + X$
${K_{sp}}({M_2}X) = {(2S)^2}S = 4{S^3}$
Dissolution of salt $Q{Y_2}$:
$Q{Y_2} \rightleftharpoons Q + 2Y$
Therefore, ${K_{sp}}(Q{Y_2}) = S{(2S)^2} = 4{S^3}$
Dissolution of salt $P{Z_3}$:
$P{Z_3} \rightleftharpoons P + 3Z$
${K_{sp}}(P{Z_3}) = S{(3S)^3} = 27{S^4}$
Now, find the relationship between above calculated solubility products.
As you can see value of ${K_{sp}}({M_2}X) = {K_{sp}}(Q{Y_2})$ and value of ${K_{sp}}(P{Z_3})$ will be lesser than ${K_{sp}}({M_2}X) = {K_{sp}}(Q{Y_2})$ because a condition is given in the question that, S < 1.
Therefore, the relation between the solubility products is as follows:
${K_{sp}}({M_2}X) = {K_{sp}}(Q{Y_2}) > {K_{sp}}(P{Z_3})$
Thus, option C is the correct answer.
Note: It should be noted that solids are not included while calculating solubility product values. Solubility product (${K_{sp}}$) represents the maximum extent to which a solid can be dissolved in a solution. Higher the value of ${K_{sp}}$ for a substance, more is its solubility. Thus, we can say that salts ${M_2}X$ and $Q{Y_2}$ are more soluble than salt $P{Z_3}$.
Recently Updated Pages
Power set of empty set has exactly subset class 11 maths CBSE

While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Whales are warmblooded animals which live in cold seas class 11 biology CBSE
