
If the roots of the equation${x^n} - 1 = 0$are$1,\alpha ,\beta ,\gamma ,.....$, show that$\left( {1 - \alpha } \right)\left( {1 - \beta } \right)\left( {1 - \gamma } \right)..... = n$
Answer
625.5k+ views
Hint: - This problem can be solved by using limits and L-Hospital’s rule.
Given that: - roots of the equation${x^n} - 1 = 0$are$1,\alpha ,\beta ,\gamma ,.....$
\[
\therefore {x^n} - 1 = \left( {x - 1} \right)\left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right)..... \\
\Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right)..... \\
\]
Take $x \to 1$
We know that$\left[ {\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^n} - 1}}{{x - 1}} = n} \right]$ (using L-Hospitals rule)
$
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {1 - \alpha } \right)\left( {1 - \beta } \right)\left( {1 - \gamma } \right)..... \\
\Rightarrow n = \left( {1 - \alpha } \right)\left( {1 - \beta } \right)\left( {1 - \gamma } \right)..... \\
\therefore \left( {1 - \alpha } \right)\left( {1 - \beta } \right)\left( {1 - \gamma } \right)..... = n \\
$
Hence the equation is proved.
Note: - L-Hospitals rule has been used here as the limit was in$\dfrac{0}{0}$ form. L-Hospitals rule can also be used for$\dfrac{\infty }{\infty }$ form. In this case the limiting value is differentiated and then the limit problem is preceded.
Given that: - roots of the equation${x^n} - 1 = 0$are$1,\alpha ,\beta ,\gamma ,.....$
\[
\therefore {x^n} - 1 = \left( {x - 1} \right)\left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right)..... \\
\Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right)..... \\
\]
Take $x \to 1$
We know that$\left[ {\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^n} - 1}}{{x - 1}} = n} \right]$ (using L-Hospitals rule)
$
\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {1 - \alpha } \right)\left( {1 - \beta } \right)\left( {1 - \gamma } \right)..... \\
\Rightarrow n = \left( {1 - \alpha } \right)\left( {1 - \beta } \right)\left( {1 - \gamma } \right)..... \\
\therefore \left( {1 - \alpha } \right)\left( {1 - \beta } \right)\left( {1 - \gamma } \right)..... = n \\
$
Hence the equation is proved.
Note: - L-Hospitals rule has been used here as the limit was in$\dfrac{0}{0}$ form. L-Hospitals rule can also be used for$\dfrac{\infty }{\infty }$ form. In this case the limiting value is differentiated and then the limit problem is preceded.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

