If the rate of change of sine of angle $\theta $ is $K$, then the rate of change of its tangent is,
(A) ${{K}^{2}}$
(B) $\dfrac{1}{{{K}^{2}}}$
(C) $K$
(D) $\dfrac{1}{K}$
Answer
379.2k+ views
Hint: Rate of change of sine of any angle $\theta $ is equal to cosine of that angle $\theta $. Also, rate of change of tangent of $\theta $ is equal to square of secant of $\theta $. Use, $\cos \theta =\dfrac{1}{\sec \theta }$ and substitute the value of $\cos \theta $, obtained by differentiating $\sin \theta $.
Complete step-by-step answer:
The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument value. Derivatives are a fundamental tool of calculus, for example, the derivative of the position of a moving object with respect to time is the object’s velocity, this measures how quickly the position of the object changes when time advances. This derivative is referred to as the instantaneous rate of change. Whenever we are asked to find the rate of change of any function, we just find the derivative of that function or in other words, simply differentiate the function.
Now, we come to the question. It has been given that the rate of change of $\sin \theta $$=K$. We know that, derivative of $\sin \theta $$=\cos \theta $. Therefore, we get, $\cos \theta =K$………………………………..(i).
Also, we know that derivative of $\tan \theta ={{\sec }^{2}}\theta $. Now,$\sec \theta =\dfrac{1}{\cos \theta }$, therefore, substituting the value of $\cos \theta $ from equation (i), we get rate of change of $\tan \theta =\dfrac{1}{{{\cos }^{2}}\theta }=\dfrac{1}{{{K}^{2}}}$.
Hence, option (b) is the correct answer.
Note: Rate of change are of two types: (i) instantaneous rate of change and (ii) average rate of change. Here, we have applied an instantaneous rate of change because according to the question we have to find the derivative of $\sin \theta $ and $\tan \theta $ with respect to angle $\theta $.
Complete step-by-step answer:
The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument value. Derivatives are a fundamental tool of calculus, for example, the derivative of the position of a moving object with respect to time is the object’s velocity, this measures how quickly the position of the object changes when time advances. This derivative is referred to as the instantaneous rate of change. Whenever we are asked to find the rate of change of any function, we just find the derivative of that function or in other words, simply differentiate the function.
Now, we come to the question. It has been given that the rate of change of $\sin \theta $$=K$. We know that, derivative of $\sin \theta $$=\cos \theta $. Therefore, we get, $\cos \theta =K$………………………………..(i).
Also, we know that derivative of $\tan \theta ={{\sec }^{2}}\theta $. Now,$\sec \theta =\dfrac{1}{\cos \theta }$, therefore, substituting the value of $\cos \theta $ from equation (i), we get rate of change of $\tan \theta =\dfrac{1}{{{\cos }^{2}}\theta }=\dfrac{1}{{{K}^{2}}}$.
Hence, option (b) is the correct answer.
Note: Rate of change are of two types: (i) instantaneous rate of change and (ii) average rate of change. Here, we have applied an instantaneous rate of change because according to the question we have to find the derivative of $\sin \theta $ and $\tan \theta $ with respect to angle $\theta $.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
State Gay Lusaaccs law of gaseous volume class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Change the following sentences into negative and interrogative class 10 english CBSE

Which is the tallest animal on the earth A Giraffes class 9 social science CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
