Answer

Verified

460.5k+ views

Hint- In an A.P \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P.

In the question above it is given that \[{{\text{p}}^{th}}\]term of an A.P. is \[q\] and \[{{\text{q}}^{th}}\] term is \[p\] of an A.P.

For the given question \[{{\text{n}}^{th}}\] Term of an A.P is asked, to find it we know in general form \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P.

So to solve this question first let us assume \[a\] be the first term and \[d\] is the common difference of the given Arithmetic progression.

So we can write \[{{\text{p}}^{th}}\]term and \[{{\text{q}}^{th}}\] term of an A.P as

\[{{\text{p}}^{th}}{\text{ term }} = q \Rightarrow a + \left( {p - 1} \right)d = q{\text{ }}........\left( 1 \right)\]

And similarly

\[{{\text{q}}^{th}}{\text{ term }} = p \Rightarrow a + \left( {q - 1} \right)d = p{\text{ }}........\left( 2 \right)\]

From the above two equations we can find the value of $a$ and $d$ which we need to find the \[{{\text{n}}^{th}}\] Term.

So, we will subtract equation (2) from (1), from here we will get $d$

\[\left( {p - q} \right)d = \left( {q - p} \right) \Rightarrow d = - 1\]

And now the value of \[d\]obtained above we will put in equation (1), from here we will get $a$ value

\[{\text{i}}{\text{.e }}a + \left( {p - 1} \right) \times \left( { - 1} \right) = q \Rightarrow a = \left( {p + q - 1} \right)\]

So we need to find the \[{{\text{n}}^{th}}\] Term

\[{{\text{n}}^{th}}\] Term \[ = a + \left( {n - 1} \right)d = \left( {p + q - 1} \right) + \left( {n - 1} \right) \times - 1 = \left( {p + q - n} \right)\]

Hence Proved the \[{{\text{n}}^{th}}\] term is \[\left( {p + q - n} \right).\]

Note- Whenever this type of question appears it is important to note down given details as in this question it is given \[{{\text{p}}^{th}}\]term of an A.P. is \[q\] and \[{{\text{q}}^{th}}\] term is \[p\]. In Arithmetic Progression the difference between the two successive terms is same and we call it common difference \[d\].In an A.P \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P. Approach this type of question with intent to find the value of \[a\]and \[d\].

In the question above it is given that \[{{\text{p}}^{th}}\]term of an A.P. is \[q\] and \[{{\text{q}}^{th}}\] term is \[p\] of an A.P.

For the given question \[{{\text{n}}^{th}}\] Term of an A.P is asked, to find it we know in general form \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P.

So to solve this question first let us assume \[a\] be the first term and \[d\] is the common difference of the given Arithmetic progression.

So we can write \[{{\text{p}}^{th}}\]term and \[{{\text{q}}^{th}}\] term of an A.P as

\[{{\text{p}}^{th}}{\text{ term }} = q \Rightarrow a + \left( {p - 1} \right)d = q{\text{ }}........\left( 1 \right)\]

And similarly

\[{{\text{q}}^{th}}{\text{ term }} = p \Rightarrow a + \left( {q - 1} \right)d = p{\text{ }}........\left( 2 \right)\]

From the above two equations we can find the value of $a$ and $d$ which we need to find the \[{{\text{n}}^{th}}\] Term.

So, we will subtract equation (2) from (1), from here we will get $d$

\[\left( {p - q} \right)d = \left( {q - p} \right) \Rightarrow d = - 1\]

And now the value of \[d\]obtained above we will put in equation (1), from here we will get $a$ value

\[{\text{i}}{\text{.e }}a + \left( {p - 1} \right) \times \left( { - 1} \right) = q \Rightarrow a = \left( {p + q - 1} \right)\]

So we need to find the \[{{\text{n}}^{th}}\] Term

\[{{\text{n}}^{th}}\] Term \[ = a + \left( {n - 1} \right)d = \left( {p + q - 1} \right) + \left( {n - 1} \right) \times - 1 = \left( {p + q - n} \right)\]

Hence Proved the \[{{\text{n}}^{th}}\] term is \[\left( {p + q - n} \right).\]

Note- Whenever this type of question appears it is important to note down given details as in this question it is given \[{{\text{p}}^{th}}\]term of an A.P. is \[q\] and \[{{\text{q}}^{th}}\] term is \[p\]. In Arithmetic Progression the difference between the two successive terms is same and we call it common difference \[d\].In an A.P \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P. Approach this type of question with intent to find the value of \[a\]and \[d\].

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

10 examples of law on inertia in our daily life

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths