
If the \[{{\text{p}}^{th}}\]term of an A.P. is \[q\] and \[{{\text{q}}^{th}}\] term is \[p\], prove that its \[{{\text{n}}^{th}}\] term is \[\left( {p + q - n} \right).\]
Answer
607.5k+ views
Hint- In an A.P \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P.
In the question above it is given that \[{{\text{p}}^{th}}\]term of an A.P. is \[q\] and \[{{\text{q}}^{th}}\] term is \[p\] of an A.P.
For the given question \[{{\text{n}}^{th}}\] Term of an A.P is asked, to find it we know in general form \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P.
So to solve this question first let us assume \[a\] be the first term and \[d\] is the common difference of the given Arithmetic progression.
So we can write \[{{\text{p}}^{th}}\]term and \[{{\text{q}}^{th}}\] term of an A.P as
\[{{\text{p}}^{th}}{\text{ term }} = q \Rightarrow a + \left( {p - 1} \right)d = q{\text{ }}........\left( 1 \right)\]
And similarly
\[{{\text{q}}^{th}}{\text{ term }} = p \Rightarrow a + \left( {q - 1} \right)d = p{\text{ }}........\left( 2 \right)\]
From the above two equations we can find the value of $a$ and $d$ which we need to find the \[{{\text{n}}^{th}}\] Term.
So, we will subtract equation (2) from (1), from here we will get $d$
\[\left( {p - q} \right)d = \left( {q - p} \right) \Rightarrow d = - 1\]
And now the value of \[d\]obtained above we will put in equation (1), from here we will get $a$ value
\[{\text{i}}{\text{.e }}a + \left( {p - 1} \right) \times \left( { - 1} \right) = q \Rightarrow a = \left( {p + q - 1} \right)\]
So we need to find the \[{{\text{n}}^{th}}\] Term
\[{{\text{n}}^{th}}\] Term \[ = a + \left( {n - 1} \right)d = \left( {p + q - 1} \right) + \left( {n - 1} \right) \times - 1 = \left( {p + q - n} \right)\]
Hence Proved the \[{{\text{n}}^{th}}\] term is \[\left( {p + q - n} \right).\]
Note- Whenever this type of question appears it is important to note down given details as in this question it is given \[{{\text{p}}^{th}}\]term of an A.P. is \[q\] and \[{{\text{q}}^{th}}\] term is \[p\]. In Arithmetic Progression the difference between the two successive terms is same and we call it common difference \[d\].In an A.P \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P. Approach this type of question with intent to find the value of \[a\]and \[d\].
In the question above it is given that \[{{\text{p}}^{th}}\]term of an A.P. is \[q\] and \[{{\text{q}}^{th}}\] term is \[p\] of an A.P.
For the given question \[{{\text{n}}^{th}}\] Term of an A.P is asked, to find it we know in general form \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P.
So to solve this question first let us assume \[a\] be the first term and \[d\] is the common difference of the given Arithmetic progression.
So we can write \[{{\text{p}}^{th}}\]term and \[{{\text{q}}^{th}}\] term of an A.P as
\[{{\text{p}}^{th}}{\text{ term }} = q \Rightarrow a + \left( {p - 1} \right)d = q{\text{ }}........\left( 1 \right)\]
And similarly
\[{{\text{q}}^{th}}{\text{ term }} = p \Rightarrow a + \left( {q - 1} \right)d = p{\text{ }}........\left( 2 \right)\]
From the above two equations we can find the value of $a$ and $d$ which we need to find the \[{{\text{n}}^{th}}\] Term.
So, we will subtract equation (2) from (1), from here we will get $d$
\[\left( {p - q} \right)d = \left( {q - p} \right) \Rightarrow d = - 1\]
And now the value of \[d\]obtained above we will put in equation (1), from here we will get $a$ value
\[{\text{i}}{\text{.e }}a + \left( {p - 1} \right) \times \left( { - 1} \right) = q \Rightarrow a = \left( {p + q - 1} \right)\]
So we need to find the \[{{\text{n}}^{th}}\] Term
\[{{\text{n}}^{th}}\] Term \[ = a + \left( {n - 1} \right)d = \left( {p + q - 1} \right) + \left( {n - 1} \right) \times - 1 = \left( {p + q - n} \right)\]
Hence Proved the \[{{\text{n}}^{th}}\] term is \[\left( {p + q - n} \right).\]
Note- Whenever this type of question appears it is important to note down given details as in this question it is given \[{{\text{p}}^{th}}\]term of an A.P. is \[q\] and \[{{\text{q}}^{th}}\] term is \[p\]. In Arithmetic Progression the difference between the two successive terms is same and we call it common difference \[d\].In an A.P \[{{\text{n}}^{th}}\] Term is given as \[a + \left( {n - 1} \right)d\] where \[a\] is the first term and \[d\] is the common difference of an A.P. Approach this type of question with intent to find the value of \[a\]and \[d\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

