
If the pth term of an AP is q and the qth term is p, prove that its nth term is (p+q-n).
Answer
515.5k+ views
Hint: Use the general mth term for an AP ${{\text{t}}_{\text{m}}}\text{ = a + (m }-\text{ 1)d}$, where ‘a’ is the first term of the AP and ‘d’ is its common difference, to formulate the two conditions given in the question to form two equations. Now use this to prove ${{\text{t}}_{\text{n}}}\text{ = (p + q }-\text{ n)}$.
Complete step-by-step answer:
We know the general mth term for an AP is ${{\text{t}}_{\text{m}}}\text{ = a + (m }-\text{ 1)d}$. Here, a is the first term of the AP and d is its common difference. Now, it is given in the question that the pth term of an AP is q. So, putting m = p in the general term, we get,
$\begin{align}
& {{\text{t}}_{\text{p}}}\text{ = q} \\
& \therefore \text{ a + (p }-\text{ 1)d = q }....\text{(i)} \\
\end{align}$
Again, it is given that the qth term of the AP is p. So putting m = q in the general term, we get,
$\begin{align}
& {{\text{t}}_{\text{q}}}\text{ = p} \\
& \therefore \text{ a + (q }-\text{ 1)d = p }....\text{(ii)} \\
\end{align}$
Now, subtracting equation (i) from (ii), we get,
\[\begin{align}
& \text{a + (p }-\text{ 1)d }-\text{ a }-\text{ (q }-\text{ 1)d = q }-\text{ p} \\
& \Rightarrow \text{ }\left( \text{p }-\text{ q} \right)\text{d = q }-\text{ p} \\
& \therefore \text{ d = }-1 \\
\end{align}\]
Thus, we obtain the value of the common difference to be –1.
Now, putting the value of common difference d = –1 in equation (i), we get,
$\begin{align}
& \text{a + }\left( \text{p }-\text{ 1} \right)\cdot \left( -1 \right)\text{ = q} \\
& \Rightarrow \text{ a }-\text{ p + 1 = q} \\
& \therefore \text{ a = p + q }-\text{ 1} \\
\end{align}$
Hence, the first term of this arithmetic progression is (p + q – 1).
Thus, in order to get the nth term of the AP, we simply need to put the values of the first term and common difference of the AP in the general term. Thus, in the formula for the general mth term ${{\text{t}}_{\text{m}}}\text{ = a + (m }-\text{ 1)d}$, putting m = n, a = (p + q – 1) and d = –1, we get,
$\begin{align}
& {{\text{t}}_{\text{n}}}\text{ = a + }\left( \text{n }-\text{ 1} \right)\text{d} \\
& \text{ = }\left( \text{p + q }-\text{ 1} \right)\text{ + }\left( \text{n }-\text{ 1} \right)\cdot \left( -1 \right) \\
& \text{ = p + q }-\text{ 1 }-\text{ n + 1} \\
& \text{ = p + q }-\text{ n } \\
\end{align}$
Thus, it is proved that the nth term of the arithmetic progression is (p + q – n).
Note: In this solution, two simultaneous equations are formed where the variables are ‘a’ and ‘d’, which are solved explicitly. Without finding the values of ‘a’ and ‘d’, it is impossible to prove that the nth term of the AP is (p + q – n).
Complete step-by-step answer:
We know the general mth term for an AP is ${{\text{t}}_{\text{m}}}\text{ = a + (m }-\text{ 1)d}$. Here, a is the first term of the AP and d is its common difference. Now, it is given in the question that the pth term of an AP is q. So, putting m = p in the general term, we get,
$\begin{align}
& {{\text{t}}_{\text{p}}}\text{ = q} \\
& \therefore \text{ a + (p }-\text{ 1)d = q }....\text{(i)} \\
\end{align}$
Again, it is given that the qth term of the AP is p. So putting m = q in the general term, we get,
$\begin{align}
& {{\text{t}}_{\text{q}}}\text{ = p} \\
& \therefore \text{ a + (q }-\text{ 1)d = p }....\text{(ii)} \\
\end{align}$
Now, subtracting equation (i) from (ii), we get,
\[\begin{align}
& \text{a + (p }-\text{ 1)d }-\text{ a }-\text{ (q }-\text{ 1)d = q }-\text{ p} \\
& \Rightarrow \text{ }\left( \text{p }-\text{ q} \right)\text{d = q }-\text{ p} \\
& \therefore \text{ d = }-1 \\
\end{align}\]
Thus, we obtain the value of the common difference to be –1.
Now, putting the value of common difference d = –1 in equation (i), we get,
$\begin{align}
& \text{a + }\left( \text{p }-\text{ 1} \right)\cdot \left( -1 \right)\text{ = q} \\
& \Rightarrow \text{ a }-\text{ p + 1 = q} \\
& \therefore \text{ a = p + q }-\text{ 1} \\
\end{align}$
Hence, the first term of this arithmetic progression is (p + q – 1).
Thus, in order to get the nth term of the AP, we simply need to put the values of the first term and common difference of the AP in the general term. Thus, in the formula for the general mth term ${{\text{t}}_{\text{m}}}\text{ = a + (m }-\text{ 1)d}$, putting m = n, a = (p + q – 1) and d = –1, we get,
$\begin{align}
& {{\text{t}}_{\text{n}}}\text{ = a + }\left( \text{n }-\text{ 1} \right)\text{d} \\
& \text{ = }\left( \text{p + q }-\text{ 1} \right)\text{ + }\left( \text{n }-\text{ 1} \right)\cdot \left( -1 \right) \\
& \text{ = p + q }-\text{ 1 }-\text{ n + 1} \\
& \text{ = p + q }-\text{ n } \\
\end{align}$
Thus, it is proved that the nth term of the arithmetic progression is (p + q – n).
Note: In this solution, two simultaneous equations are formed where the variables are ‘a’ and ‘d’, which are solved explicitly. Without finding the values of ‘a’ and ‘d’, it is impossible to prove that the nth term of the AP is (p + q – n).
Recently Updated Pages
Briefly describe the structure of the Brain class 11 biology CBSE

Draw a percentage bar graph for the following data class 11 maths CBSE

Normality of 10WV H2SO4 solution is nearly a 01 b 02 class 11 chemistry CBSE

What is the frequency of revolution of electrons present class 11 chemistry CBSE

Two bodies of mass 4 and 6 kg are attached to the ends class 11 physics CBSE

1 hertz is equal to 1 1 vibration per minute 2 10 vibration class 11 physics CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

