
If the product of two non-null square matrices is a null matrix, show that both of them must be singular matrices.
Answer
566.4k+ views
Hint:
Here we use the properties of non-null matrices, null matrices, singular matrices, and non-singular matrices. In the given question the product of two non-null square matrices is a null matrix. In the solution part we assume one of the matrices as a nonsingular matrix and calculate the property of another matrix.
Complete step by step solution:
Here we know from the problem that the product of two non-null square matrices is a null matrix.
Now. We suppose A and B be two non-null matrices of the same order matrix $n \times n$.
Here we write the product of two matrices is a null matrix.
${\rm{AB}} = 0$
Now, we assume the matrix A is a non-singular matrix then the inverse of matrix A exists that is ${{\rm{A}}^{ - 1}}$. Multiply ${{\rm{A}}^{ - 1}}$ in the expression ${\rm{AB}} = 0$.
${{\rm{A}}^{ - 1}}\left( {{\rm{AB}}} \right) = {{\rm{A}}^{ - 1}}0$
We substitute the expressions ${\rm{AB}} = 0$ and ${{\rm{A}}^{ - 1}}{\rm{A}} = I$ (where $I$ is the identity matrix) in the expression ${{\rm{A}}^{ - 1}}\left( {{\rm{AB}}} \right) = {{\rm{A}}^{ - 1}}0$.
$\Rightarrow {{\rm{A}}^{ - 1}}\left( {{\rm{AB}}} \right) = {{\rm{A}}^{ - 1}}0\\
\Rightarrow {{\rm{A}}^{ - 1}}{\rm{A}}\left( {\rm{B}} \right) = 0\\
\Rightarrow {\rm{IB}} = 0\\
\Rightarrow {\rm{B}} = 0$
Hence, matrix B is the null matrix. This means matrix A is a singular matrix.
Now, we assume B is a non-singular matrix then the inverse of matrix B exists that is ${{\rm{B}}^{ - 1}}$. Multiply ${{\rm{B}}^{ - 1}}$ in the expression ${\rm{AB}} = 0$.
$\left( {{\rm{AB}}} \right){{\rm{B}}^{ - 1}} = {{\rm{B}}^{ - 1}}0$
We substitute the expressions ${\rm{AB}} = 0$ and ${\rm{B}}{{\rm{B}}^{ - 1}} = I$ (where I is the identity matrix) in the expression $\left( {{\rm{AB}}} \right){{\rm{B}}^{ - 1}} = {{\rm{B}}^{ - 1}}0$.
$
\Rightarrow \left( {{\rm{AB}}} \right){{\rm{B}}^{ - 1}} = {{\rm{B}}^{ - 1}}0\\
\Rightarrow {\rm{A}}\left( {{\rm{B}}{{\rm{B}}^{ - 1}}} \right) = 0\\
\Rightarrow {\rm{AI}} = 0\\
\Rightarrow {\rm{A}} = 0
$
Hence, matrix A is the null matrix. This means matrix B is a singular matrix.
And, the conclusion is that both of them must be singular matrices.
Note:
We can solve this problem with determinant methods. The determinant for the product ${\rm{AB}} = 0$ , use the property to show the zero or null matrix. Here, $\left| {\rm{A}} \right| = 0$ or $\left| {\rm{B}} \right| = 0$ or both. But the determinant method may not give an absolute solution.
Here we use the properties of non-null matrices, null matrices, singular matrices, and non-singular matrices. In the given question the product of two non-null square matrices is a null matrix. In the solution part we assume one of the matrices as a nonsingular matrix and calculate the property of another matrix.
Complete step by step solution:
Here we know from the problem that the product of two non-null square matrices is a null matrix.
Now. We suppose A and B be two non-null matrices of the same order matrix $n \times n$.
Here we write the product of two matrices is a null matrix.
${\rm{AB}} = 0$
Now, we assume the matrix A is a non-singular matrix then the inverse of matrix A exists that is ${{\rm{A}}^{ - 1}}$. Multiply ${{\rm{A}}^{ - 1}}$ in the expression ${\rm{AB}} = 0$.
${{\rm{A}}^{ - 1}}\left( {{\rm{AB}}} \right) = {{\rm{A}}^{ - 1}}0$
We substitute the expressions ${\rm{AB}} = 0$ and ${{\rm{A}}^{ - 1}}{\rm{A}} = I$ (where $I$ is the identity matrix) in the expression ${{\rm{A}}^{ - 1}}\left( {{\rm{AB}}} \right) = {{\rm{A}}^{ - 1}}0$.
$\Rightarrow {{\rm{A}}^{ - 1}}\left( {{\rm{AB}}} \right) = {{\rm{A}}^{ - 1}}0\\
\Rightarrow {{\rm{A}}^{ - 1}}{\rm{A}}\left( {\rm{B}} \right) = 0\\
\Rightarrow {\rm{IB}} = 0\\
\Rightarrow {\rm{B}} = 0$
Hence, matrix B is the null matrix. This means matrix A is a singular matrix.
Now, we assume B is a non-singular matrix then the inverse of matrix B exists that is ${{\rm{B}}^{ - 1}}$. Multiply ${{\rm{B}}^{ - 1}}$ in the expression ${\rm{AB}} = 0$.
$\left( {{\rm{AB}}} \right){{\rm{B}}^{ - 1}} = {{\rm{B}}^{ - 1}}0$
We substitute the expressions ${\rm{AB}} = 0$ and ${\rm{B}}{{\rm{B}}^{ - 1}} = I$ (where I is the identity matrix) in the expression $\left( {{\rm{AB}}} \right){{\rm{B}}^{ - 1}} = {{\rm{B}}^{ - 1}}0$.
$
\Rightarrow \left( {{\rm{AB}}} \right){{\rm{B}}^{ - 1}} = {{\rm{B}}^{ - 1}}0\\
\Rightarrow {\rm{A}}\left( {{\rm{B}}{{\rm{B}}^{ - 1}}} \right) = 0\\
\Rightarrow {\rm{AI}} = 0\\
\Rightarrow {\rm{A}} = 0
$
Hence, matrix A is the null matrix. This means matrix B is a singular matrix.
And, the conclusion is that both of them must be singular matrices.
Note:
We can solve this problem with determinant methods. The determinant for the product ${\rm{AB}} = 0$ , use the property to show the zero or null matrix. Here, $\left| {\rm{A}} \right| = 0$ or $\left| {\rm{B}} \right| = 0$ or both. But the determinant method may not give an absolute solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

