
If the points \[\left( {0,0} \right),\left( {2,0} \right),(0, - 2)\] and \[(k, - 2)\;\]are concyclic then \[k = \]
A. \[2\]
B. $ - 2$
C. $0$
D. $1$
Answer
599.1k+ views
Hint : Consider the points as coordinates of square
Assume a square ABCD
Since the center of the square is mid point of the diagonal. So it will divide the diagonal in ratio 1:1.
This is a cyclic quadrilateral. In line segment$\,\,AC$, let $O(x,y)$ be midpoint. Then by section formula the ratio between AO:OC = 1:1.
The coordinates of O is $ = $ $\left\{ {\left( {\frac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\}$
$
\Rightarrow (x,y) = \left\{ {\left( {\dfrac{{1(0) + 1(0)}}{{1 + 1}}} \right),\left( {\dfrac{{1(0) + 1( - 2)}}{{1 + 1}}} \right)} \right\} \\
\Rightarrow (x,y) = (0, - 1) \\
$
∴ Coordinates of $O$ is $(0, - 1)$
Now line segment $BD,O$ is the midpoint
\[BO:OD = 1:1\]
The coordinates of \[O = \]$\left\{ {\left( {\dfrac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\}$
$
\Rightarrow (0, - 1) = \left( {\dfrac{{1 \times 2 + 1 \times k}}{{1 + 1}},\dfrac{{1 \times 0 + 1 \times ( - 2)}}{{1 + 1}}} \right) \\
\Rightarrow (0, - 1) = \left( {\dfrac{{2 + k}}{2}, - 1} \right) \\
\\
$
From here we can say
$
\dfrac{{2 + k}}{2} = 0 \\
k = - 2 \\
$
Hence the correct option is B.
Note :- In this question we have considered that those are the coordinates of a square. Now taking two diagonals of a square as we know the center of a square is the midpoint of both the diagonals from this midpoint we know the ratio will be 1:1 by this concept we have solved and got the value of k.
Assume a square ABCD
Since the center of the square is mid point of the diagonal. So it will divide the diagonal in ratio 1:1.
This is a cyclic quadrilateral. In line segment$\,\,AC$, let $O(x,y)$ be midpoint. Then by section formula the ratio between AO:OC = 1:1.
The coordinates of O is $ = $ $\left\{ {\left( {\frac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\}$
$
\Rightarrow (x,y) = \left\{ {\left( {\dfrac{{1(0) + 1(0)}}{{1 + 1}}} \right),\left( {\dfrac{{1(0) + 1( - 2)}}{{1 + 1}}} \right)} \right\} \\
\Rightarrow (x,y) = (0, - 1) \\
$
∴ Coordinates of $O$ is $(0, - 1)$
Now line segment $BD,O$ is the midpoint
\[BO:OD = 1:1\]
The coordinates of \[O = \]$\left\{ {\left( {\dfrac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\}$
$
\Rightarrow (0, - 1) = \left( {\dfrac{{1 \times 2 + 1 \times k}}{{1 + 1}},\dfrac{{1 \times 0 + 1 \times ( - 2)}}{{1 + 1}}} \right) \\
\Rightarrow (0, - 1) = \left( {\dfrac{{2 + k}}{2}, - 1} \right) \\
\\
$
From here we can say
$
\dfrac{{2 + k}}{2} = 0 \\
k = - 2 \\
$
Hence the correct option is B.
Note :- In this question we have considered that those are the coordinates of a square. Now taking two diagonals of a square as we know the center of a square is the midpoint of both the diagonals from this midpoint we know the ratio will be 1:1 by this concept we have solved and got the value of k.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

