
If the points \[\left( {0,0} \right),\left( {2,0} \right),(0, - 2)\] and \[(k, - 2)\;\]are concyclic then \[k = \]
A. \[2\]
B. $ - 2$
C. $0$
D. $1$
Answer
608.7k+ views
Hint : Consider the points as coordinates of square
Assume a square ABCD
Since the center of the square is mid point of the diagonal. So it will divide the diagonal in ratio 1:1.
This is a cyclic quadrilateral. In line segment$\,\,AC$, let $O(x,y)$ be midpoint. Then by section formula the ratio between AO:OC = 1:1.
The coordinates of O is $ = $ $\left\{ {\left( {\frac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\}$
$
\Rightarrow (x,y) = \left\{ {\left( {\dfrac{{1(0) + 1(0)}}{{1 + 1}}} \right),\left( {\dfrac{{1(0) + 1( - 2)}}{{1 + 1}}} \right)} \right\} \\
\Rightarrow (x,y) = (0, - 1) \\
$
∴ Coordinates of $O$ is $(0, - 1)$
Now line segment $BD,O$ is the midpoint
\[BO:OD = 1:1\]
The coordinates of \[O = \]$\left\{ {\left( {\dfrac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\}$
$
\Rightarrow (0, - 1) = \left( {\dfrac{{1 \times 2 + 1 \times k}}{{1 + 1}},\dfrac{{1 \times 0 + 1 \times ( - 2)}}{{1 + 1}}} \right) \\
\Rightarrow (0, - 1) = \left( {\dfrac{{2 + k}}{2}, - 1} \right) \\
\\
$
From here we can say
$
\dfrac{{2 + k}}{2} = 0 \\
k = - 2 \\
$
Hence the correct option is B.
Note :- In this question we have considered that those are the coordinates of a square. Now taking two diagonals of a square as we know the center of a square is the midpoint of both the diagonals from this midpoint we know the ratio will be 1:1 by this concept we have solved and got the value of k.
Assume a square ABCD
Since the center of the square is mid point of the diagonal. So it will divide the diagonal in ratio 1:1.
This is a cyclic quadrilateral. In line segment$\,\,AC$, let $O(x,y)$ be midpoint. Then by section formula the ratio between AO:OC = 1:1.
The coordinates of O is $ = $ $\left\{ {\left( {\frac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\}$
$
\Rightarrow (x,y) = \left\{ {\left( {\dfrac{{1(0) + 1(0)}}{{1 + 1}}} \right),\left( {\dfrac{{1(0) + 1( - 2)}}{{1 + 1}}} \right)} \right\} \\
\Rightarrow (x,y) = (0, - 1) \\
$
∴ Coordinates of $O$ is $(0, - 1)$
Now line segment $BD,O$ is the midpoint
\[BO:OD = 1:1\]
The coordinates of \[O = \]$\left\{ {\left( {\dfrac{{n{x_1} + m{x_2}}}{{m + n}}} \right),\left( {\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)} \right\}$
$
\Rightarrow (0, - 1) = \left( {\dfrac{{1 \times 2 + 1 \times k}}{{1 + 1}},\dfrac{{1 \times 0 + 1 \times ( - 2)}}{{1 + 1}}} \right) \\
\Rightarrow (0, - 1) = \left( {\dfrac{{2 + k}}{2}, - 1} \right) \\
\\
$
From here we can say
$
\dfrac{{2 + k}}{2} = 0 \\
k = - 2 \\
$
Hence the correct option is B.
Note :- In this question we have considered that those are the coordinates of a square. Now taking two diagonals of a square as we know the center of a square is the midpoint of both the diagonals from this midpoint we know the ratio will be 1:1 by this concept we have solved and got the value of k.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

