Answer
Verified
493.2k+ views
Compare the given equations with the general equation of linear equations. Check them with the conditions of consistency for linear equations.
“Complete step-by-step answer:”
Let us consider the general linear equation ax + by + c = 0
and another equation mx + ny + d = 0.
ax + by + c = 0
mx + ny + d = 0
Compare both the equation with the conditions of consistency for linear equations;
(i) System of linear equations is consistent with unique solution if $\dfrac{a}{m}\ne \dfrac{b}{n}$
(ii) System of linear equation is consistent with infinitely many solutions if $\dfrac{a}{m}=\dfrac{b}{n}=\dfrac{c}{d}$
(iii) System of linear equation is inconsistent i.e., it has no solution if $\dfrac{a}{m}=\dfrac{b}{n}\ne \dfrac{c}{d}$
Let us consider 3x – y = 2, compare it with general equation,
ax + by + c = 0
$\therefore $ a = 3, b = -1, c = -2
Compare ax – 3y = 6 with general equation mx + ny + d = 0.
$\therefore $m = 9, n = -3, d = -6
Now check with all three conditions.
$\begin{align}
& \dfrac{a}{m}\ne \dfrac{b}{n}\Rightarrow \dfrac{3}{9}=\dfrac{a}{m} \\
& \therefore \dfrac{a}{m}=\dfrac{1}{3} \\
& \dfrac{b}{n}=\dfrac{-1}{-3}=\dfrac{1}{3} \\
\end{align}$
Where shows $\dfrac{a}{m}=\dfrac{b}{n}$
$\therefore $Condition not satisfied.
(ii) $\dfrac{a}{m}=\dfrac{b}{n}=\dfrac{c}{d}$
$\dfrac{a}{m}=\dfrac{3}{9}=\dfrac{1}{3}$
$\begin{align}
& \dfrac{b}{n}=\dfrac{-1}{-3}=\dfrac{1}{3} \\
& \dfrac{c}{d}=\dfrac{-2}{-6}=\dfrac{1}{3} \\
\end{align}$
$\therefore $This condition is satisfied.
$(iii)\text{ }\dfrac{a}{m}=\dfrac{b}{n}\ne \dfrac{c}{d}$
We got $\dfrac{a}{m}=\dfrac{b}{n}=\dfrac{c}{d}$, so condition not satisfied.
So in this case, condition 2 is true i.e., $\dfrac{a}{m}=\dfrac{b}{n}=\dfrac{c}{d}$;
Hence, it has an infinite number of solutions.
So m = infinity, hence $\dfrac{1}{m}=0$.
Note: Substitute values of a, b, c, m, n and d on each condition of consistency.
If a system has at least 1 solution, it is consistent.
If a consistent system has exactly 1 solution, it is independent.
If a consistent system has an infinite number of solutions, it is dependent.
“Complete step-by-step answer:”
Let us consider the general linear equation ax + by + c = 0
and another equation mx + ny + d = 0.
ax + by + c = 0
mx + ny + d = 0
Compare both the equation with the conditions of consistency for linear equations;
(i) System of linear equations is consistent with unique solution if $\dfrac{a}{m}\ne \dfrac{b}{n}$
(ii) System of linear equation is consistent with infinitely many solutions if $\dfrac{a}{m}=\dfrac{b}{n}=\dfrac{c}{d}$
(iii) System of linear equation is inconsistent i.e., it has no solution if $\dfrac{a}{m}=\dfrac{b}{n}\ne \dfrac{c}{d}$
Let us consider 3x – y = 2, compare it with general equation,
ax + by + c = 0
$\therefore $ a = 3, b = -1, c = -2
Compare ax – 3y = 6 with general equation mx + ny + d = 0.
$\therefore $m = 9, n = -3, d = -6
Now check with all three conditions.
$\begin{align}
& \dfrac{a}{m}\ne \dfrac{b}{n}\Rightarrow \dfrac{3}{9}=\dfrac{a}{m} \\
& \therefore \dfrac{a}{m}=\dfrac{1}{3} \\
& \dfrac{b}{n}=\dfrac{-1}{-3}=\dfrac{1}{3} \\
\end{align}$
Where shows $\dfrac{a}{m}=\dfrac{b}{n}$
$\therefore $Condition not satisfied.
(ii) $\dfrac{a}{m}=\dfrac{b}{n}=\dfrac{c}{d}$
$\dfrac{a}{m}=\dfrac{3}{9}=\dfrac{1}{3}$
$\begin{align}
& \dfrac{b}{n}=\dfrac{-1}{-3}=\dfrac{1}{3} \\
& \dfrac{c}{d}=\dfrac{-2}{-6}=\dfrac{1}{3} \\
\end{align}$
$\therefore $This condition is satisfied.
$(iii)\text{ }\dfrac{a}{m}=\dfrac{b}{n}\ne \dfrac{c}{d}$
We got $\dfrac{a}{m}=\dfrac{b}{n}=\dfrac{c}{d}$, so condition not satisfied.
So in this case, condition 2 is true i.e., $\dfrac{a}{m}=\dfrac{b}{n}=\dfrac{c}{d}$;
Hence, it has an infinite number of solutions.
So m = infinity, hence $\dfrac{1}{m}=0$.
Note: Substitute values of a, b, c, m, n and d on each condition of consistency.
If a system has at least 1 solution, it is consistent.
If a consistent system has exactly 1 solution, it is independent.
If a consistent system has an infinite number of solutions, it is dependent.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE