Answer
Verified
476.1k+ views
Hint: Here, we will use the Arithmetic Progression Concept and the ${n^{th}}$term formulae i.e..,${T_n} = a + (n - 1)d$.
Complete step-by-step answer:
Given,
The ${m^{th}}$term of an A.P is $\dfrac{1}{n}$ and ${n^{th}}$term is $\dfrac{1}{m}$
Now, let us consider ‘a’ be the first term and‘d’ is the common difference of an A.P.As, we know that the ${n^{th}}$term of an A.P will be ${T_n} = a + (n - 1)d$.
Therefore, the ${m^{th}}$ term can be written as
$
\Rightarrow {m^{th}}term = \dfrac{1}{n} \\
\Rightarrow \dfrac{1}{n} = a + (m - 1)d \to (1) \\
$
Similarly, the ${n^{th}}$term is given as $\dfrac{1}{m}$, it can be written as
$
\Rightarrow {n^{th}}term = \dfrac{1}{m} \\
\Rightarrow \dfrac{1}{m} = a + (n - 1)d \to (2) \\
$
Let us subtract equation (2) from equation (1), we get
$
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = a + (m - 1)d - a - (n - 1)d \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = md - d - nd + d \\
\Rightarrow \dfrac{{m - n}}{{mn}} = (m - n)d \\
\Rightarrow \dfrac{1}{{mn}} = d \\
$
Hence, we obtained the value of d i.e.., $\dfrac{1}{{mn}}$.Now let us substitute the obtained value of d in equation (1), we get
$
(1) \Rightarrow \dfrac{1}{n} = a + (m - 1)d \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{{(m - 1)}}{{mn}} \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{1}{n} - \dfrac{1}{{mn}} \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{n} + \dfrac{1}{{mn}} = a \\
\Rightarrow \dfrac{1}{{mn}} = a \\
$
Hence, here also we got the value of ‘a’ as $\dfrac{1}{{mn}}$.Therefore, we can say
$a = d = \dfrac{1}{{mn}}$
Now, we need to find the ${(mn)^{th}}$term which is equal to ‘$a + (mn - 1)d$’.So substituting the obtained values of ‘a’ and d’ we get
$
\Rightarrow {(mn)^{th}}term = a + (mn - 1)d = \dfrac{1}{{mn}} + (mn - 1)(\dfrac{1}{{mn}}) = \dfrac{1}{{mn}} + 1 - \dfrac{1}{{mn}} = 1 \\
\Rightarrow {(mn)^{th}}term = 1 \\
$
Hence, we proved that the value of ${(mn)^{th}}$term is$1$.
Note: In an AP, d is the common difference of the consecutive terms i.e..,${t_3} - {t_2} = {t_2} - {t_1} = {t_n} - {t_{n - 1}} = d$.
Complete step-by-step answer:
Given,
The ${m^{th}}$term of an A.P is $\dfrac{1}{n}$ and ${n^{th}}$term is $\dfrac{1}{m}$
Now, let us consider ‘a’ be the first term and‘d’ is the common difference of an A.P.As, we know that the ${n^{th}}$term of an A.P will be ${T_n} = a + (n - 1)d$.
Therefore, the ${m^{th}}$ term can be written as
$
\Rightarrow {m^{th}}term = \dfrac{1}{n} \\
\Rightarrow \dfrac{1}{n} = a + (m - 1)d \to (1) \\
$
Similarly, the ${n^{th}}$term is given as $\dfrac{1}{m}$, it can be written as
$
\Rightarrow {n^{th}}term = \dfrac{1}{m} \\
\Rightarrow \dfrac{1}{m} = a + (n - 1)d \to (2) \\
$
Let us subtract equation (2) from equation (1), we get
$
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = a + (m - 1)d - a - (n - 1)d \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = md - d - nd + d \\
\Rightarrow \dfrac{{m - n}}{{mn}} = (m - n)d \\
\Rightarrow \dfrac{1}{{mn}} = d \\
$
Hence, we obtained the value of d i.e.., $\dfrac{1}{{mn}}$.Now let us substitute the obtained value of d in equation (1), we get
$
(1) \Rightarrow \dfrac{1}{n} = a + (m - 1)d \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{{(m - 1)}}{{mn}} \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{1}{n} - \dfrac{1}{{mn}} \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{n} + \dfrac{1}{{mn}} = a \\
\Rightarrow \dfrac{1}{{mn}} = a \\
$
Hence, here also we got the value of ‘a’ as $\dfrac{1}{{mn}}$.Therefore, we can say
$a = d = \dfrac{1}{{mn}}$
Now, we need to find the ${(mn)^{th}}$term which is equal to ‘$a + (mn - 1)d$’.So substituting the obtained values of ‘a’ and d’ we get
$
\Rightarrow {(mn)^{th}}term = a + (mn - 1)d = \dfrac{1}{{mn}} + (mn - 1)(\dfrac{1}{{mn}}) = \dfrac{1}{{mn}} + 1 - \dfrac{1}{{mn}} = 1 \\
\Rightarrow {(mn)^{th}}term = 1 \\
$
Hence, we proved that the value of ${(mn)^{th}}$term is$1$.
Note: In an AP, d is the common difference of the consecutive terms i.e..,${t_3} - {t_2} = {t_2} - {t_1} = {t_n} - {t_{n - 1}} = d$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell