
If the ${m^{th}}$ term of an A.P be $\dfrac{1}{n}$ and ${n^{th}}$ term be $\dfrac{1}{m}$ , then show that its ${(mn)^{th}}$ term is 1.
Answer
605.1k+ views
Hint: Here, we will use the Arithmetic Progression Concept and the ${n^{th}}$term formulae i.e..,${T_n} = a + (n - 1)d$.
Complete step-by-step answer:
Given,
The ${m^{th}}$term of an A.P is $\dfrac{1}{n}$ and ${n^{th}}$term is $\dfrac{1}{m}$
Now, let us consider ‘a’ be the first term and‘d’ is the common difference of an A.P.As, we know that the ${n^{th}}$term of an A.P will be ${T_n} = a + (n - 1)d$.
Therefore, the ${m^{th}}$ term can be written as
$
\Rightarrow {m^{th}}term = \dfrac{1}{n} \\
\Rightarrow \dfrac{1}{n} = a + (m - 1)d \to (1) \\
$
Similarly, the ${n^{th}}$term is given as $\dfrac{1}{m}$, it can be written as
$
\Rightarrow {n^{th}}term = \dfrac{1}{m} \\
\Rightarrow \dfrac{1}{m} = a + (n - 1)d \to (2) \\
$
Let us subtract equation (2) from equation (1), we get
$
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = a + (m - 1)d - a - (n - 1)d \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = md - d - nd + d \\
\Rightarrow \dfrac{{m - n}}{{mn}} = (m - n)d \\
\Rightarrow \dfrac{1}{{mn}} = d \\
$
Hence, we obtained the value of d i.e.., $\dfrac{1}{{mn}}$.Now let us substitute the obtained value of d in equation (1), we get
$
(1) \Rightarrow \dfrac{1}{n} = a + (m - 1)d \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{{(m - 1)}}{{mn}} \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{1}{n} - \dfrac{1}{{mn}} \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{n} + \dfrac{1}{{mn}} = a \\
\Rightarrow \dfrac{1}{{mn}} = a \\
$
Hence, here also we got the value of ‘a’ as $\dfrac{1}{{mn}}$.Therefore, we can say
$a = d = \dfrac{1}{{mn}}$
Now, we need to find the ${(mn)^{th}}$term which is equal to ‘$a + (mn - 1)d$’.So substituting the obtained values of ‘a’ and d’ we get
$
\Rightarrow {(mn)^{th}}term = a + (mn - 1)d = \dfrac{1}{{mn}} + (mn - 1)(\dfrac{1}{{mn}}) = \dfrac{1}{{mn}} + 1 - \dfrac{1}{{mn}} = 1 \\
\Rightarrow {(mn)^{th}}term = 1 \\
$
Hence, we proved that the value of ${(mn)^{th}}$term is$1$.
Note: In an AP, d is the common difference of the consecutive terms i.e..,${t_3} - {t_2} = {t_2} - {t_1} = {t_n} - {t_{n - 1}} = d$.
Complete step-by-step answer:
Given,
The ${m^{th}}$term of an A.P is $\dfrac{1}{n}$ and ${n^{th}}$term is $\dfrac{1}{m}$
Now, let us consider ‘a’ be the first term and‘d’ is the common difference of an A.P.As, we know that the ${n^{th}}$term of an A.P will be ${T_n} = a + (n - 1)d$.
Therefore, the ${m^{th}}$ term can be written as
$
\Rightarrow {m^{th}}term = \dfrac{1}{n} \\
\Rightarrow \dfrac{1}{n} = a + (m - 1)d \to (1) \\
$
Similarly, the ${n^{th}}$term is given as $\dfrac{1}{m}$, it can be written as
$
\Rightarrow {n^{th}}term = \dfrac{1}{m} \\
\Rightarrow \dfrac{1}{m} = a + (n - 1)d \to (2) \\
$
Let us subtract equation (2) from equation (1), we get
$
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = a + (m - 1)d - a - (n - 1)d \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = md - d - nd + d \\
\Rightarrow \dfrac{{m - n}}{{mn}} = (m - n)d \\
\Rightarrow \dfrac{1}{{mn}} = d \\
$
Hence, we obtained the value of d i.e.., $\dfrac{1}{{mn}}$.Now let us substitute the obtained value of d in equation (1), we get
$
(1) \Rightarrow \dfrac{1}{n} = a + (m - 1)d \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{{(m - 1)}}{{mn}} \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{1}{n} - \dfrac{1}{{mn}} \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{n} + \dfrac{1}{{mn}} = a \\
\Rightarrow \dfrac{1}{{mn}} = a \\
$
Hence, here also we got the value of ‘a’ as $\dfrac{1}{{mn}}$.Therefore, we can say
$a = d = \dfrac{1}{{mn}}$
Now, we need to find the ${(mn)^{th}}$term which is equal to ‘$a + (mn - 1)d$’.So substituting the obtained values of ‘a’ and d’ we get
$
\Rightarrow {(mn)^{th}}term = a + (mn - 1)d = \dfrac{1}{{mn}} + (mn - 1)(\dfrac{1}{{mn}}) = \dfrac{1}{{mn}} + 1 - \dfrac{1}{{mn}} = 1 \\
\Rightarrow {(mn)^{th}}term = 1 \\
$
Hence, we proved that the value of ${(mn)^{th}}$term is$1$.
Note: In an AP, d is the common difference of the consecutive terms i.e..,${t_3} - {t_2} = {t_2} - {t_1} = {t_n} - {t_{n - 1}} = d$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

