Answer
Verified
494.1k+ views
Hint: Here, we will use the Arithmetic Progression Concept and the ${n^{th}}$term formulae i.e..,${T_n} = a + (n - 1)d$.
Complete step-by-step answer:
Given,
The ${m^{th}}$term of an A.P is $\dfrac{1}{n}$ and ${n^{th}}$term is $\dfrac{1}{m}$
Now, let us consider ‘a’ be the first term and‘d’ is the common difference of an A.P.As, we know that the ${n^{th}}$term of an A.P will be ${T_n} = a + (n - 1)d$.
Therefore, the ${m^{th}}$ term can be written as
$
\Rightarrow {m^{th}}term = \dfrac{1}{n} \\
\Rightarrow \dfrac{1}{n} = a + (m - 1)d \to (1) \\
$
Similarly, the ${n^{th}}$term is given as $\dfrac{1}{m}$, it can be written as
$
\Rightarrow {n^{th}}term = \dfrac{1}{m} \\
\Rightarrow \dfrac{1}{m} = a + (n - 1)d \to (2) \\
$
Let us subtract equation (2) from equation (1), we get
$
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = a + (m - 1)d - a - (n - 1)d \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = md - d - nd + d \\
\Rightarrow \dfrac{{m - n}}{{mn}} = (m - n)d \\
\Rightarrow \dfrac{1}{{mn}} = d \\
$
Hence, we obtained the value of d i.e.., $\dfrac{1}{{mn}}$.Now let us substitute the obtained value of d in equation (1), we get
$
(1) \Rightarrow \dfrac{1}{n} = a + (m - 1)d \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{{(m - 1)}}{{mn}} \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{1}{n} - \dfrac{1}{{mn}} \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{n} + \dfrac{1}{{mn}} = a \\
\Rightarrow \dfrac{1}{{mn}} = a \\
$
Hence, here also we got the value of ‘a’ as $\dfrac{1}{{mn}}$.Therefore, we can say
$a = d = \dfrac{1}{{mn}}$
Now, we need to find the ${(mn)^{th}}$term which is equal to ‘$a + (mn - 1)d$’.So substituting the obtained values of ‘a’ and d’ we get
$
\Rightarrow {(mn)^{th}}term = a + (mn - 1)d = \dfrac{1}{{mn}} + (mn - 1)(\dfrac{1}{{mn}}) = \dfrac{1}{{mn}} + 1 - \dfrac{1}{{mn}} = 1 \\
\Rightarrow {(mn)^{th}}term = 1 \\
$
Hence, we proved that the value of ${(mn)^{th}}$term is$1$.
Note: In an AP, d is the common difference of the consecutive terms i.e..,${t_3} - {t_2} = {t_2} - {t_1} = {t_n} - {t_{n - 1}} = d$.
Complete step-by-step answer:
Given,
The ${m^{th}}$term of an A.P is $\dfrac{1}{n}$ and ${n^{th}}$term is $\dfrac{1}{m}$
Now, let us consider ‘a’ be the first term and‘d’ is the common difference of an A.P.As, we know that the ${n^{th}}$term of an A.P will be ${T_n} = a + (n - 1)d$.
Therefore, the ${m^{th}}$ term can be written as
$
\Rightarrow {m^{th}}term = \dfrac{1}{n} \\
\Rightarrow \dfrac{1}{n} = a + (m - 1)d \to (1) \\
$
Similarly, the ${n^{th}}$term is given as $\dfrac{1}{m}$, it can be written as
$
\Rightarrow {n^{th}}term = \dfrac{1}{m} \\
\Rightarrow \dfrac{1}{m} = a + (n - 1)d \to (2) \\
$
Let us subtract equation (2) from equation (1), we get
$
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = a + (m - 1)d - a - (n - 1)d \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = md - d - nd + d \\
\Rightarrow \dfrac{{m - n}}{{mn}} = (m - n)d \\
\Rightarrow \dfrac{1}{{mn}} = d \\
$
Hence, we obtained the value of d i.e.., $\dfrac{1}{{mn}}$.Now let us substitute the obtained value of d in equation (1), we get
$
(1) \Rightarrow \dfrac{1}{n} = a + (m - 1)d \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{{(m - 1)}}{{mn}} \\
\Rightarrow \dfrac{1}{n} = a + \dfrac{1}{n} - \dfrac{1}{{mn}} \\
\Rightarrow \dfrac{1}{n} - \dfrac{1}{n} + \dfrac{1}{{mn}} = a \\
\Rightarrow \dfrac{1}{{mn}} = a \\
$
Hence, here also we got the value of ‘a’ as $\dfrac{1}{{mn}}$.Therefore, we can say
$a = d = \dfrac{1}{{mn}}$
Now, we need to find the ${(mn)^{th}}$term which is equal to ‘$a + (mn - 1)d$’.So substituting the obtained values of ‘a’ and d’ we get
$
\Rightarrow {(mn)^{th}}term = a + (mn - 1)d = \dfrac{1}{{mn}} + (mn - 1)(\dfrac{1}{{mn}}) = \dfrac{1}{{mn}} + 1 - \dfrac{1}{{mn}} = 1 \\
\Rightarrow {(mn)^{th}}term = 1 \\
$
Hence, we proved that the value of ${(mn)^{th}}$term is$1$.
Note: In an AP, d is the common difference of the consecutive terms i.e..,${t_3} - {t_2} = {t_2} - {t_1} = {t_n} - {t_{n - 1}} = d$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which of the following is the capital of the union class 9 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Name the metals of the coins Tanka Shashgani and Jital class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life