
If the midpoint of the segment AB is (1, 4), the coordinates of A are (2, – 3). How do you find the coordinate of point B?
Answer
447.6k+ views
Hint: We are given that the midpoint of segment AB is (1, 4) and we are given the coordinate of one endpoint and we are asked to find the other. To find this we will first learn how the points and the ratio in which the points divide the line segmented connected are. Then we will use the section formula \[X=\dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}}\] and \[Y=\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}}.\] We will use the coordinate of A and the midpoint to find the coordinate of B. We will also learn about a short trick to do such problems.
Complete step by step answer:
We are given that we have a line segment AB whose midpoint is (1, 4). The midpoint is the points that will divide the line into two equal ratios. If we consider that X is the midpoint of AB then AX = XB. So, the ratio of AX:XB will be
\[\dfrac{AX}{XB}=\dfrac{AX}{AX}\left[ \text{As }XB=AX \right]\]
\[\Rightarrow \dfrac{AX}{XB}=\dfrac{1}{1}\]
Therefore the ratio is 1:1.
Now, we will use the section formula. The section formula tells us about how the points cutting the line segment into sections are connected to the coordinate of the endpoint of the line segment. If we have
X divides it into ratio \[{{m}_{1}}:{{m}_{2}}\] then the coordinate of X is given as
\[X=\dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]
\[Y=\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]
In our problem we have coordinates of A as (2, – 3). So, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( 2,-3 \right)\] and the coordinate of midpoint X as (1, 4). So, (x, y) = (1, 4). We have to find the value of coordinates of B, we have it as \[B\left( {{x}_{2}},{{y}_{2}} \right).\] So as we have that ratio as 1:1, so \[{{m}_{1}}=1\] and \[{{m}_{2}}=1.\] Now, we use these values in
\[X=\dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]
\[\Rightarrow 1=\dfrac{1\times {{x}_{2}}+1\left( 2 \right)}{1+1}\]
On simplifying, we get,
\[\Rightarrow 1=\dfrac{{{x}_{2}}+2}{2}\]
Solving for \[{{x}_{2}}\] we get,
\[\Rightarrow {{x}_{2}}+2=2\]
\[\Rightarrow {{x}_{2}}=0\]
Now, using the value on \[Y=\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}}\] we get
\[\Rightarrow 4=\dfrac{1\times {{y}_{2}}+\left( -3 \right)}{1+1}\]
On simplifying, we get,
\[\Rightarrow 4=\dfrac{{{y}_{2}}-3}{2}\]
Solving for \[{{y}_{2}}\] we get,
\[\Rightarrow 8={{y}_{2}}-3\]
\[\Rightarrow {{y}_{2}}=11\]
So, we get \[{{x}_{2}}=0\] and \[{{y}_{2}}=11.\] So, the coordinate of B is (0, 11)
Note: We can also solve the problem in which are given the midpoint, as we have a midpoint formula given to us as \[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}\] and \[y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}.\] Now as x = 1 and \[{{x}_{1}}=2,\] so we get,
\[\Rightarrow 1=\dfrac{2+{{x}_{2}}}{2}\]
On simplifying, we get,
\[\Rightarrow 2=2+{{x}_{2}}\]
Hence,
\[\Rightarrow {{x}_{2}}=0\]
Now, we have \[{{y}_{1}}=-3\] and y = 4, so we get,
\[4=\dfrac{-3+{{y}_{2}}}{2}\]
On simplifying, we get,
\[8=-3+{{y}_{2}}\]
Solving for \[{{y}_{2}}\] we get,
\[\Rightarrow {{y}_{2}}=11\]
So, the coordinate of B is \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 0,11 \right).\]
Complete step by step answer:
We are given that we have a line segment AB whose midpoint is (1, 4). The midpoint is the points that will divide the line into two equal ratios. If we consider that X is the midpoint of AB then AX = XB. So, the ratio of AX:XB will be

\[\dfrac{AX}{XB}=\dfrac{AX}{AX}\left[ \text{As }XB=AX \right]\]
\[\Rightarrow \dfrac{AX}{XB}=\dfrac{1}{1}\]
Therefore the ratio is 1:1.
Now, we will use the section formula. The section formula tells us about how the points cutting the line segment into sections are connected to the coordinate of the endpoint of the line segment. If we have

X divides it into ratio \[{{m}_{1}}:{{m}_{2}}\] then the coordinate of X is given as
\[X=\dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]
\[Y=\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]
In our problem we have coordinates of A as (2, – 3). So, \[\left( {{x}_{1}},{{y}_{1}} \right)=\left( 2,-3 \right)\] and the coordinate of midpoint X as (1, 4). So, (x, y) = (1, 4). We have to find the value of coordinates of B, we have it as \[B\left( {{x}_{2}},{{y}_{2}} \right).\] So as we have that ratio as 1:1, so \[{{m}_{1}}=1\] and \[{{m}_{2}}=1.\] Now, we use these values in
\[X=\dfrac{{{m}_{1}}{{x}_{2}}+{{m}_{2}}{{x}_{1}}}{{{m}_{1}}+{{m}_{2}}}\]
\[\Rightarrow 1=\dfrac{1\times {{x}_{2}}+1\left( 2 \right)}{1+1}\]
On simplifying, we get,
\[\Rightarrow 1=\dfrac{{{x}_{2}}+2}{2}\]
Solving for \[{{x}_{2}}\] we get,
\[\Rightarrow {{x}_{2}}+2=2\]
\[\Rightarrow {{x}_{2}}=0\]
Now, using the value on \[Y=\dfrac{{{m}_{1}}{{y}_{2}}+{{m}_{2}}{{y}_{1}}}{{{m}_{1}}+{{m}_{2}}}\] we get
\[\Rightarrow 4=\dfrac{1\times {{y}_{2}}+\left( -3 \right)}{1+1}\]
On simplifying, we get,
\[\Rightarrow 4=\dfrac{{{y}_{2}}-3}{2}\]
Solving for \[{{y}_{2}}\] we get,
\[\Rightarrow 8={{y}_{2}}-3\]
\[\Rightarrow {{y}_{2}}=11\]
So, we get \[{{x}_{2}}=0\] and \[{{y}_{2}}=11.\] So, the coordinate of B is (0, 11)
Note: We can also solve the problem in which are given the midpoint, as we have a midpoint formula given to us as \[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}\] and \[y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}.\] Now as x = 1 and \[{{x}_{1}}=2,\] so we get,
\[\Rightarrow 1=\dfrac{2+{{x}_{2}}}{2}\]
On simplifying, we get,
\[\Rightarrow 2=2+{{x}_{2}}\]
Hence,
\[\Rightarrow {{x}_{2}}=0\]
Now, we have \[{{y}_{1}}=-3\] and y = 4, so we get,
\[4=\dfrac{-3+{{y}_{2}}}{2}\]
On simplifying, we get,
\[8=-3+{{y}_{2}}\]
Solving for \[{{y}_{2}}\] we get,
\[\Rightarrow {{y}_{2}}=11\]
So, the coordinate of B is \[\left( {{x}_{2}},{{y}_{2}} \right)=\left( 0,11 \right).\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
