Answer
Verified
426.9k+ views
Hint: escape velocity of earth 11.2$km/\sec $. The escape velocity depends only on the mass and size of the object from which something is trying to escape. The escape velocity from the Earth is the same for a pebble as it would be for the Space Shuttle.
Complete step by step answer:
let the mass of earth be ${M_{earth}}$ and the mass of planet be${M_{planet}}$.
According to the question we know that ${M_{planet}} = 8{M_{earth}}$
Let radius of earth be ${r_{earth}}$and radius of the planet be ${r_{planet}}$
According to the question we know that ${r_{planet}} = 2{r_{earth}}$
Equation to calculate the escape velocity of a planet. ${v_{escape}} = \sqrt {\dfrac{{2G{M_{PLANET}}}}{{{R_{planet}}}}} $
Where G is gravitational G = Newton's universal constant of gravity$6.67 \times {10^{ - 11}}N/{m^2}/k{g^3}$
M= mass of the planet; R = radius of the planet.
So to find the escape velocity for our planet.
${v_{escape}} = \sqrt {\dfrac{{2G8{M_{earth}}}}{{2{R_{earth}}}}} $
${v_{escape}} = (\sqrt {\dfrac{8}{2}} ) \times \sqrt {\dfrac{{2G{M_{earth}}}}{{{R_{earth}}}}} $
We already know that the escape velocity of earth is 11.2km/sec.
${v_{escape}} = \sqrt {\dfrac{8}{2}} \times 11.2$
$\therefore {v_{escape}}= 22.4km/\sec $
The escape velocity of our new planet will be 22.4 km/sec.
Note: Other method: We can solve this question by equating the ratio of planet earth and our new planet.
So to find we know
${v_{escape}} = \sqrt {2gR} $
If mass of the planet is 8 times that of earth
$\dfrac{{{v_{planet}}}}{{{v_{earth}}}} = \sqrt {\dfrac{{{M_{planet}}}}{{{M_{earth}}}} \times \Rightarrow\dfrac{{{\operatorname{R} _{earth}}}}{{{R_{planet}}}}} $
$
\Rightarrow\dfrac{{{v_{planet}}}}{{{v_{earth}}}} = \sqrt {\dfrac{{8{M_{earth}}}}{{{M_{earth}}}} \times \Rightarrow\dfrac{{{R_{earth}}}}{{2{R_{earth}}}}} \\
$
$\Rightarrow\dfrac{{{v_{planet}}}}{{{v_{earth}}}} = 2$
$\Rightarrow{v_{planet}} = 2{v_{earth}}$
$\Rightarrow {v_{planet}} = 2 \times 11.2km/\sec $
$
\therefore{v_{planet}} = 22.4km/\sec \\
$
Complete step by step answer:
let the mass of earth be ${M_{earth}}$ and the mass of planet be${M_{planet}}$.
According to the question we know that ${M_{planet}} = 8{M_{earth}}$
Let radius of earth be ${r_{earth}}$and radius of the planet be ${r_{planet}}$
According to the question we know that ${r_{planet}} = 2{r_{earth}}$
Equation to calculate the escape velocity of a planet. ${v_{escape}} = \sqrt {\dfrac{{2G{M_{PLANET}}}}{{{R_{planet}}}}} $
Where G is gravitational G = Newton's universal constant of gravity$6.67 \times {10^{ - 11}}N/{m^2}/k{g^3}$
M= mass of the planet; R = radius of the planet.
So to find the escape velocity for our planet.
${v_{escape}} = \sqrt {\dfrac{{2G8{M_{earth}}}}{{2{R_{earth}}}}} $
${v_{escape}} = (\sqrt {\dfrac{8}{2}} ) \times \sqrt {\dfrac{{2G{M_{earth}}}}{{{R_{earth}}}}} $
We already know that the escape velocity of earth is 11.2km/sec.
${v_{escape}} = \sqrt {\dfrac{8}{2}} \times 11.2$
$\therefore {v_{escape}}= 22.4km/\sec $
The escape velocity of our new planet will be 22.4 km/sec.
Note: Other method: We can solve this question by equating the ratio of planet earth and our new planet.
So to find we know
${v_{escape}} = \sqrt {2gR} $
If mass of the planet is 8 times that of earth
$\dfrac{{{v_{planet}}}}{{{v_{earth}}}} = \sqrt {\dfrac{{{M_{planet}}}}{{{M_{earth}}}} \times \Rightarrow\dfrac{{{\operatorname{R} _{earth}}}}{{{R_{planet}}}}} $
$
\Rightarrow\dfrac{{{v_{planet}}}}{{{v_{earth}}}} = \sqrt {\dfrac{{8{M_{earth}}}}{{{M_{earth}}}} \times \Rightarrow\dfrac{{{R_{earth}}}}{{2{R_{earth}}}}} \\
$
$\Rightarrow\dfrac{{{v_{planet}}}}{{{v_{earth}}}} = 2$
$\Rightarrow{v_{planet}} = 2{v_{earth}}$
$\Rightarrow {v_{planet}} = 2 \times 11.2km/\sec $
$
\therefore{v_{planet}} = 22.4km/\sec \\
$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE