Answer
Verified
477k+ views
Hint: The parametric form of the equation of straight line, \[\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r\] is used in this question.
Complete step-by-step answer:
The line given in the question is \[y-\sqrt{3}x+3=0\] and the equation of the parabola is given as \[{{y}^{2}}=x+2\].
It is said in the question that the line cuts the parabola at points \[A\] and \[B\]. A point \[P\] with coordinates \[\left( \sqrt{3},0 \right)\] is also given. So, we can plot the graph with all the details as shown below,
We need to find the values of \[PA\] and \[PB\] to solve the question. \[PA\] and \[PB\] represent the distance of the line joined by the points \[P,A\] and \[P,B\] respectively.
The parametric form of a straight line passing through the point $\left( {{x}_{1}},{{y}_{1}} \right)$ and making an angle of \[\theta \] with the positive direction of the x-axis is given by,
\[\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r\ldots \ldots \ldots (i)\]
where \[r\] is the distance between the two points with coordinates $\left( x,y \right)$ and $\left( {{x}_{1}},{{y}_{1}} \right)$.
In this question, \[PA\] and \[PB\] are equivalent to the distance $r$ mentioned above.
We have the coordinates of the point $\left( {{x}_{1}},{{y}_{1}} \right)=\left( \sqrt{3},0 \right)$. So, the first step is to find the angle \[\theta \].
For that, we need to consider the equation of the line and rearrange it in the slope-intercept form,
\[y-\sqrt{3}x+3=0\]
\[y=\sqrt{3}x-3\]
Comparing it with the slope-intercept form given by \[y=mx+c\], we get the slope as \[m=\sqrt{3}=\tan \theta \].
The angle \[\theta \] can hence be computed as below,
\[\begin{align}
& \tan \theta =\sqrt{3} \\
& \theta ={{\tan }^{-1}}\sqrt{3} \\
& \theta =60{}^\circ \\
\end{align}\]
Now substituting the obtained results in the equation \[(i)\],
\[\dfrac{x-\sqrt{3}}{\cos 60{}^\circ }=\dfrac{y-0}{\sin 60{}^\circ }=r\]
Substituting the values of \[\cos 60{}^\circ =\dfrac{1}{2},\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\], we get,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
Equating both \[x\] and \[y\] to $r$,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=r,\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
\[\begin{align}
& x-\sqrt{3}=\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
& x=\sqrt{3}+\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
\end{align}\]
So, we have the coordinates of the point, \[A\] or \[B\] as \[\left( \sqrt{3}+\dfrac{r}{2},\dfrac{\sqrt{3}}{2}r \right)\].
As per the question, we know that this point cuts the parabola \[{{y}^{2}}=x+2\], so it can be substituted in the equation for the parabola as,
\[\begin{align}
& {{\left( \dfrac{\sqrt{3}}{2}r \right)}^{2}}=\left( \sqrt{3}+\dfrac{r}{2} \right)+2 \\
& \dfrac{3{{r}^{2}}}{4}=\dfrac{r}{2}+\left( \sqrt{3}+2 \right) \\
& \dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0 \\
\end{align}\]
This is in the form of a quadratic equation in $r$, so we can get the values of $r$ using the formula as,
\[\begin{align}
& r=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& r=\dfrac{-\left( -\dfrac{1}{2} \right)\pm \sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}-4\times \left( \dfrac{3}{4} \right)\times -\left( \sqrt{3}+2 \right)}}{2\left( \dfrac{3}{4} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}+\left( \dfrac{12}{4} \right)\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Taking $\dfrac{1}{4}$ outside from the root,
\[\begin{align}
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}\left( 1+12\left( \sqrt{3}+2 \right) \right)}}{\left( \dfrac{3}{2} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \dfrac{1}{2}\sqrt{1+12\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Cancelling out $\dfrac{1}{2}$,
\[r=\dfrac{1\pm \sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Therefore, we have the roots as,
\[\begin{align}
& PA=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
& PB=\dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
\end{align}\]
Now, we can compute \[PA.PB\] as,
\[PA.PB=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\times \dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Applying the identity \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\],
\[\begin{align}
& PA.PB=\dfrac{1}{9}\times \left[ {{1}^{2}}-{{\sqrt{1+12\left( \sqrt{3}+2 \right)}}^{2}} \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ 1-1-12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ -12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{-12}{9}\times \left( \sqrt{3}+2 \right) \\
& PA.PB=\dfrac{-4}{3}\times \left( \sqrt{3}+2 \right) \\
\end{align}\]
We have to consider the modulus for the distance, so we get the value of \[PA.PB\] as \[\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|=\dfrac{4\left( \sqrt{3}+2 \right)}{3}\].
Hence option (a) is the correct answer.
Note: The last portion of the solution can be done more easily by using the fact that the product of the roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] can be obtained as \[\dfrac{c}{a}\]. So, for this question,$\dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0$, the product of the roots \[PA\] and \[PB\] can be obtained as \[\begin{align}
& PA.PB=\dfrac{-\left( \sqrt{3}+2 \right)}{\dfrac{3}{4}} \\
& PA.PB=\dfrac{-4\left( \sqrt{3}+2 \right)}{3} \\
& PA.PB=\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|\Rightarrow \dfrac{4\left( \sqrt{3}+2 \right)}{3} \\
\end{align}\]
Complete step-by-step answer:
The line given in the question is \[y-\sqrt{3}x+3=0\] and the equation of the parabola is given as \[{{y}^{2}}=x+2\].
It is said in the question that the line cuts the parabola at points \[A\] and \[B\]. A point \[P\] with coordinates \[\left( \sqrt{3},0 \right)\] is also given. So, we can plot the graph with all the details as shown below,
We need to find the values of \[PA\] and \[PB\] to solve the question. \[PA\] and \[PB\] represent the distance of the line joined by the points \[P,A\] and \[P,B\] respectively.
The parametric form of a straight line passing through the point $\left( {{x}_{1}},{{y}_{1}} \right)$ and making an angle of \[\theta \] with the positive direction of the x-axis is given by,
\[\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r\ldots \ldots \ldots (i)\]
where \[r\] is the distance between the two points with coordinates $\left( x,y \right)$ and $\left( {{x}_{1}},{{y}_{1}} \right)$.
In this question, \[PA\] and \[PB\] are equivalent to the distance $r$ mentioned above.
We have the coordinates of the point $\left( {{x}_{1}},{{y}_{1}} \right)=\left( \sqrt{3},0 \right)$. So, the first step is to find the angle \[\theta \].
For that, we need to consider the equation of the line and rearrange it in the slope-intercept form,
\[y-\sqrt{3}x+3=0\]
\[y=\sqrt{3}x-3\]
Comparing it with the slope-intercept form given by \[y=mx+c\], we get the slope as \[m=\sqrt{3}=\tan \theta \].
The angle \[\theta \] can hence be computed as below,
\[\begin{align}
& \tan \theta =\sqrt{3} \\
& \theta ={{\tan }^{-1}}\sqrt{3} \\
& \theta =60{}^\circ \\
\end{align}\]
Now substituting the obtained results in the equation \[(i)\],
\[\dfrac{x-\sqrt{3}}{\cos 60{}^\circ }=\dfrac{y-0}{\sin 60{}^\circ }=r\]
Substituting the values of \[\cos 60{}^\circ =\dfrac{1}{2},\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\], we get,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
Equating both \[x\] and \[y\] to $r$,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=r,\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
\[\begin{align}
& x-\sqrt{3}=\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
& x=\sqrt{3}+\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
\end{align}\]
So, we have the coordinates of the point, \[A\] or \[B\] as \[\left( \sqrt{3}+\dfrac{r}{2},\dfrac{\sqrt{3}}{2}r \right)\].
As per the question, we know that this point cuts the parabola \[{{y}^{2}}=x+2\], so it can be substituted in the equation for the parabola as,
\[\begin{align}
& {{\left( \dfrac{\sqrt{3}}{2}r \right)}^{2}}=\left( \sqrt{3}+\dfrac{r}{2} \right)+2 \\
& \dfrac{3{{r}^{2}}}{4}=\dfrac{r}{2}+\left( \sqrt{3}+2 \right) \\
& \dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0 \\
\end{align}\]
This is in the form of a quadratic equation in $r$, so we can get the values of $r$ using the formula as,
\[\begin{align}
& r=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& r=\dfrac{-\left( -\dfrac{1}{2} \right)\pm \sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}-4\times \left( \dfrac{3}{4} \right)\times -\left( \sqrt{3}+2 \right)}}{2\left( \dfrac{3}{4} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}+\left( \dfrac{12}{4} \right)\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Taking $\dfrac{1}{4}$ outside from the root,
\[\begin{align}
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}\left( 1+12\left( \sqrt{3}+2 \right) \right)}}{\left( \dfrac{3}{2} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \dfrac{1}{2}\sqrt{1+12\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Cancelling out $\dfrac{1}{2}$,
\[r=\dfrac{1\pm \sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Therefore, we have the roots as,
\[\begin{align}
& PA=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
& PB=\dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
\end{align}\]
Now, we can compute \[PA.PB\] as,
\[PA.PB=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\times \dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Applying the identity \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\],
\[\begin{align}
& PA.PB=\dfrac{1}{9}\times \left[ {{1}^{2}}-{{\sqrt{1+12\left( \sqrt{3}+2 \right)}}^{2}} \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ 1-1-12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ -12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{-12}{9}\times \left( \sqrt{3}+2 \right) \\
& PA.PB=\dfrac{-4}{3}\times \left( \sqrt{3}+2 \right) \\
\end{align}\]
We have to consider the modulus for the distance, so we get the value of \[PA.PB\] as \[\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|=\dfrac{4\left( \sqrt{3}+2 \right)}{3}\].
Hence option (a) is the correct answer.
Note: The last portion of the solution can be done more easily by using the fact that the product of the roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] can be obtained as \[\dfrac{c}{a}\]. So, for this question,$\dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0$, the product of the roots \[PA\] and \[PB\] can be obtained as \[\begin{align}
& PA.PB=\dfrac{-\left( \sqrt{3}+2 \right)}{\dfrac{3}{4}} \\
& PA.PB=\dfrac{-4\left( \sqrt{3}+2 \right)}{3} \\
& PA.PB=\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|\Rightarrow \dfrac{4\left( \sqrt{3}+2 \right)}{3} \\
\end{align}\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths