If the line \[y-\sqrt{3}x+3=0\] cuts the parabola \[{{y}^{2}}=x+2\] at \[A\] and \[B\], then
\[PA.PB\]
is equal to [where $P=\left( \sqrt{3},0 \right)$]
(a) \[\dfrac{4\left( \sqrt{3}+2 \right)}{3}\]
(b) $\dfrac{4\left( 2-\sqrt{3} \right)}{3}$
(c) \[\dfrac{4\sqrt{3}}{2}\]
(d) \[\dfrac{2\left( \sqrt{3}+2 \right)}{3}\]
Last updated date: 25th Mar 2023
•
Total views: 307.8k
•
Views today: 4.85k
Answer
307.8k+ views
Hint: The parametric form of the equation of straight line, \[\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r\] is used in this question.
Complete step-by-step answer:
The line given in the question is \[y-\sqrt{3}x+3=0\] and the equation of the parabola is given as \[{{y}^{2}}=x+2\].
It is said in the question that the line cuts the parabola at points \[A\] and \[B\]. A point \[P\] with coordinates \[\left( \sqrt{3},0 \right)\] is also given. So, we can plot the graph with all the details as shown below,
We need to find the values of \[PA\] and \[PB\] to solve the question. \[PA\] and \[PB\] represent the distance of the line joined by the points \[P,A\] and \[P,B\] respectively.
The parametric form of a straight line passing through the point $\left( {{x}_{1}},{{y}_{1}} \right)$ and making an angle of \[\theta \] with the positive direction of the x-axis is given by,
\[\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r\ldots \ldots \ldots (i)\]
where \[r\] is the distance between the two points with coordinates $\left( x,y \right)$ and $\left( {{x}_{1}},{{y}_{1}} \right)$.
In this question, \[PA\] and \[PB\] are equivalent to the distance $r$ mentioned above.
We have the coordinates of the point $\left( {{x}_{1}},{{y}_{1}} \right)=\left( \sqrt{3},0 \right)$. So, the first step is to find the angle \[\theta \].
For that, we need to consider the equation of the line and rearrange it in the slope-intercept form,
\[y-\sqrt{3}x+3=0\]
\[y=\sqrt{3}x-3\]
Comparing it with the slope-intercept form given by \[y=mx+c\], we get the slope as \[m=\sqrt{3}=\tan \theta \].
The angle \[\theta \] can hence be computed as below,
\[\begin{align}
& \tan \theta =\sqrt{3} \\
& \theta ={{\tan }^{-1}}\sqrt{3} \\
& \theta =60{}^\circ \\
\end{align}\]
Now substituting the obtained results in the equation \[(i)\],
\[\dfrac{x-\sqrt{3}}{\cos 60{}^\circ }=\dfrac{y-0}{\sin 60{}^\circ }=r\]
Substituting the values of \[\cos 60{}^\circ =\dfrac{1}{2},\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\], we get,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
Equating both \[x\] and \[y\] to $r$,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=r,\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
\[\begin{align}
& x-\sqrt{3}=\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
& x=\sqrt{3}+\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
\end{align}\]
So, we have the coordinates of the point, \[A\] or \[B\] as \[\left( \sqrt{3}+\dfrac{r}{2},\dfrac{\sqrt{3}}{2}r \right)\].
As per the question, we know that this point cuts the parabola \[{{y}^{2}}=x+2\], so it can be substituted in the equation for the parabola as,
\[\begin{align}
& {{\left( \dfrac{\sqrt{3}}{2}r \right)}^{2}}=\left( \sqrt{3}+\dfrac{r}{2} \right)+2 \\
& \dfrac{3{{r}^{2}}}{4}=\dfrac{r}{2}+\left( \sqrt{3}+2 \right) \\
& \dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0 \\
\end{align}\]
This is in the form of a quadratic equation in $r$, so we can get the values of $r$ using the formula as,
\[\begin{align}
& r=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& r=\dfrac{-\left( -\dfrac{1}{2} \right)\pm \sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}-4\times \left( \dfrac{3}{4} \right)\times -\left( \sqrt{3}+2 \right)}}{2\left( \dfrac{3}{4} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}+\left( \dfrac{12}{4} \right)\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Taking $\dfrac{1}{4}$ outside from the root,
\[\begin{align}
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}\left( 1+12\left( \sqrt{3}+2 \right) \right)}}{\left( \dfrac{3}{2} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \dfrac{1}{2}\sqrt{1+12\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Cancelling out $\dfrac{1}{2}$,
\[r=\dfrac{1\pm \sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Therefore, we have the roots as,
\[\begin{align}
& PA=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
& PB=\dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
\end{align}\]
Now, we can compute \[PA.PB\] as,
\[PA.PB=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\times \dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Applying the identity \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\],
\[\begin{align}
& PA.PB=\dfrac{1}{9}\times \left[ {{1}^{2}}-{{\sqrt{1+12\left( \sqrt{3}+2 \right)}}^{2}} \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ 1-1-12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ -12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{-12}{9}\times \left( \sqrt{3}+2 \right) \\
& PA.PB=\dfrac{-4}{3}\times \left( \sqrt{3}+2 \right) \\
\end{align}\]
We have to consider the modulus for the distance, so we get the value of \[PA.PB\] as \[\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|=\dfrac{4\left( \sqrt{3}+2 \right)}{3}\].
Hence option (a) is the correct answer.
Note: The last portion of the solution can be done more easily by using the fact that the product of the roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] can be obtained as \[\dfrac{c}{a}\]. So, for this question,$\dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0$, the product of the roots \[PA\] and \[PB\] can be obtained as \[\begin{align}
& PA.PB=\dfrac{-\left( \sqrt{3}+2 \right)}{\dfrac{3}{4}} \\
& PA.PB=\dfrac{-4\left( \sqrt{3}+2 \right)}{3} \\
& PA.PB=\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|\Rightarrow \dfrac{4\left( \sqrt{3}+2 \right)}{3} \\
\end{align}\]
Complete step-by-step answer:
The line given in the question is \[y-\sqrt{3}x+3=0\] and the equation of the parabola is given as \[{{y}^{2}}=x+2\].
It is said in the question that the line cuts the parabola at points \[A\] and \[B\]. A point \[P\] with coordinates \[\left( \sqrt{3},0 \right)\] is also given. So, we can plot the graph with all the details as shown below,

We need to find the values of \[PA\] and \[PB\] to solve the question. \[PA\] and \[PB\] represent the distance of the line joined by the points \[P,A\] and \[P,B\] respectively.
The parametric form of a straight line passing through the point $\left( {{x}_{1}},{{y}_{1}} \right)$ and making an angle of \[\theta \] with the positive direction of the x-axis is given by,
\[\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r\ldots \ldots \ldots (i)\]
where \[r\] is the distance between the two points with coordinates $\left( x,y \right)$ and $\left( {{x}_{1}},{{y}_{1}} \right)$.
In this question, \[PA\] and \[PB\] are equivalent to the distance $r$ mentioned above.
We have the coordinates of the point $\left( {{x}_{1}},{{y}_{1}} \right)=\left( \sqrt{3},0 \right)$. So, the first step is to find the angle \[\theta \].
For that, we need to consider the equation of the line and rearrange it in the slope-intercept form,
\[y-\sqrt{3}x+3=0\]
\[y=\sqrt{3}x-3\]
Comparing it with the slope-intercept form given by \[y=mx+c\], we get the slope as \[m=\sqrt{3}=\tan \theta \].
The angle \[\theta \] can hence be computed as below,
\[\begin{align}
& \tan \theta =\sqrt{3} \\
& \theta ={{\tan }^{-1}}\sqrt{3} \\
& \theta =60{}^\circ \\
\end{align}\]
Now substituting the obtained results in the equation \[(i)\],
\[\dfrac{x-\sqrt{3}}{\cos 60{}^\circ }=\dfrac{y-0}{\sin 60{}^\circ }=r\]
Substituting the values of \[\cos 60{}^\circ =\dfrac{1}{2},\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\], we get,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
Equating both \[x\] and \[y\] to $r$,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=r,\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
\[\begin{align}
& x-\sqrt{3}=\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
& x=\sqrt{3}+\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
\end{align}\]
So, we have the coordinates of the point, \[A\] or \[B\] as \[\left( \sqrt{3}+\dfrac{r}{2},\dfrac{\sqrt{3}}{2}r \right)\].
As per the question, we know that this point cuts the parabola \[{{y}^{2}}=x+2\], so it can be substituted in the equation for the parabola as,
\[\begin{align}
& {{\left( \dfrac{\sqrt{3}}{2}r \right)}^{2}}=\left( \sqrt{3}+\dfrac{r}{2} \right)+2 \\
& \dfrac{3{{r}^{2}}}{4}=\dfrac{r}{2}+\left( \sqrt{3}+2 \right) \\
& \dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0 \\
\end{align}\]
This is in the form of a quadratic equation in $r$, so we can get the values of $r$ using the formula as,
\[\begin{align}
& r=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& r=\dfrac{-\left( -\dfrac{1}{2} \right)\pm \sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}-4\times \left( \dfrac{3}{4} \right)\times -\left( \sqrt{3}+2 \right)}}{2\left( \dfrac{3}{4} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}+\left( \dfrac{12}{4} \right)\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Taking $\dfrac{1}{4}$ outside from the root,
\[\begin{align}
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}\left( 1+12\left( \sqrt{3}+2 \right) \right)}}{\left( \dfrac{3}{2} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \dfrac{1}{2}\sqrt{1+12\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Cancelling out $\dfrac{1}{2}$,
\[r=\dfrac{1\pm \sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Therefore, we have the roots as,
\[\begin{align}
& PA=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
& PB=\dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
\end{align}\]
Now, we can compute \[PA.PB\] as,
\[PA.PB=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\times \dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Applying the identity \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\],
\[\begin{align}
& PA.PB=\dfrac{1}{9}\times \left[ {{1}^{2}}-{{\sqrt{1+12\left( \sqrt{3}+2 \right)}}^{2}} \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ 1-1-12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ -12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{-12}{9}\times \left( \sqrt{3}+2 \right) \\
& PA.PB=\dfrac{-4}{3}\times \left( \sqrt{3}+2 \right) \\
\end{align}\]
We have to consider the modulus for the distance, so we get the value of \[PA.PB\] as \[\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|=\dfrac{4\left( \sqrt{3}+2 \right)}{3}\].
Hence option (a) is the correct answer.
Note: The last portion of the solution can be done more easily by using the fact that the product of the roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] can be obtained as \[\dfrac{c}{a}\]. So, for this question,$\dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0$, the product of the roots \[PA\] and \[PB\] can be obtained as \[\begin{align}
& PA.PB=\dfrac{-\left( \sqrt{3}+2 \right)}{\dfrac{3}{4}} \\
& PA.PB=\dfrac{-4\left( \sqrt{3}+2 \right)}{3} \\
& PA.PB=\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|\Rightarrow \dfrac{4\left( \sqrt{3}+2 \right)}{3} \\
\end{align}\]
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
