
If the line \[y-\sqrt{3}x+3=0\] cuts the parabola \[{{y}^{2}}=x+2\] at \[A\] and \[B\], then
\[PA.PB\]
is equal to [where $P=\left( \sqrt{3},0 \right)$]
(a) \[\dfrac{4\left( \sqrt{3}+2 \right)}{3}\]
(b) $\dfrac{4\left( 2-\sqrt{3} \right)}{3}$
(c) \[\dfrac{4\sqrt{3}}{2}\]
(d) \[\dfrac{2\left( \sqrt{3}+2 \right)}{3}\]
Answer
613.2k+ views
Hint: The parametric form of the equation of straight line, \[\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r\] is used in this question.
Complete step-by-step answer:
The line given in the question is \[y-\sqrt{3}x+3=0\] and the equation of the parabola is given as \[{{y}^{2}}=x+2\].
It is said in the question that the line cuts the parabola at points \[A\] and \[B\]. A point \[P\] with coordinates \[\left( \sqrt{3},0 \right)\] is also given. So, we can plot the graph with all the details as shown below,
We need to find the values of \[PA\] and \[PB\] to solve the question. \[PA\] and \[PB\] represent the distance of the line joined by the points \[P,A\] and \[P,B\] respectively.
The parametric form of a straight line passing through the point $\left( {{x}_{1}},{{y}_{1}} \right)$ and making an angle of \[\theta \] with the positive direction of the x-axis is given by,
\[\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r\ldots \ldots \ldots (i)\]
where \[r\] is the distance between the two points with coordinates $\left( x,y \right)$ and $\left( {{x}_{1}},{{y}_{1}} \right)$.
In this question, \[PA\] and \[PB\] are equivalent to the distance $r$ mentioned above.
We have the coordinates of the point $\left( {{x}_{1}},{{y}_{1}} \right)=\left( \sqrt{3},0 \right)$. So, the first step is to find the angle \[\theta \].
For that, we need to consider the equation of the line and rearrange it in the slope-intercept form,
\[y-\sqrt{3}x+3=0\]
\[y=\sqrt{3}x-3\]
Comparing it with the slope-intercept form given by \[y=mx+c\], we get the slope as \[m=\sqrt{3}=\tan \theta \].
The angle \[\theta \] can hence be computed as below,
\[\begin{align}
& \tan \theta =\sqrt{3} \\
& \theta ={{\tan }^{-1}}\sqrt{3} \\
& \theta =60{}^\circ \\
\end{align}\]
Now substituting the obtained results in the equation \[(i)\],
\[\dfrac{x-\sqrt{3}}{\cos 60{}^\circ }=\dfrac{y-0}{\sin 60{}^\circ }=r\]
Substituting the values of \[\cos 60{}^\circ =\dfrac{1}{2},\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\], we get,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
Equating both \[x\] and \[y\] to $r$,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=r,\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
\[\begin{align}
& x-\sqrt{3}=\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
& x=\sqrt{3}+\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
\end{align}\]
So, we have the coordinates of the point, \[A\] or \[B\] as \[\left( \sqrt{3}+\dfrac{r}{2},\dfrac{\sqrt{3}}{2}r \right)\].
As per the question, we know that this point cuts the parabola \[{{y}^{2}}=x+2\], so it can be substituted in the equation for the parabola as,
\[\begin{align}
& {{\left( \dfrac{\sqrt{3}}{2}r \right)}^{2}}=\left( \sqrt{3}+\dfrac{r}{2} \right)+2 \\
& \dfrac{3{{r}^{2}}}{4}=\dfrac{r}{2}+\left( \sqrt{3}+2 \right) \\
& \dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0 \\
\end{align}\]
This is in the form of a quadratic equation in $r$, so we can get the values of $r$ using the formula as,
\[\begin{align}
& r=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& r=\dfrac{-\left( -\dfrac{1}{2} \right)\pm \sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}-4\times \left( \dfrac{3}{4} \right)\times -\left( \sqrt{3}+2 \right)}}{2\left( \dfrac{3}{4} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}+\left( \dfrac{12}{4} \right)\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Taking $\dfrac{1}{4}$ outside from the root,
\[\begin{align}
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}\left( 1+12\left( \sqrt{3}+2 \right) \right)}}{\left( \dfrac{3}{2} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \dfrac{1}{2}\sqrt{1+12\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Cancelling out $\dfrac{1}{2}$,
\[r=\dfrac{1\pm \sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Therefore, we have the roots as,
\[\begin{align}
& PA=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
& PB=\dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
\end{align}\]
Now, we can compute \[PA.PB\] as,
\[PA.PB=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\times \dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Applying the identity \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\],
\[\begin{align}
& PA.PB=\dfrac{1}{9}\times \left[ {{1}^{2}}-{{\sqrt{1+12\left( \sqrt{3}+2 \right)}}^{2}} \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ 1-1-12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ -12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{-12}{9}\times \left( \sqrt{3}+2 \right) \\
& PA.PB=\dfrac{-4}{3}\times \left( \sqrt{3}+2 \right) \\
\end{align}\]
We have to consider the modulus for the distance, so we get the value of \[PA.PB\] as \[\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|=\dfrac{4\left( \sqrt{3}+2 \right)}{3}\].
Hence option (a) is the correct answer.
Note: The last portion of the solution can be done more easily by using the fact that the product of the roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] can be obtained as \[\dfrac{c}{a}\]. So, for this question,$\dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0$, the product of the roots \[PA\] and \[PB\] can be obtained as \[\begin{align}
& PA.PB=\dfrac{-\left( \sqrt{3}+2 \right)}{\dfrac{3}{4}} \\
& PA.PB=\dfrac{-4\left( \sqrt{3}+2 \right)}{3} \\
& PA.PB=\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|\Rightarrow \dfrac{4\left( \sqrt{3}+2 \right)}{3} \\
\end{align}\]
Complete step-by-step answer:
The line given in the question is \[y-\sqrt{3}x+3=0\] and the equation of the parabola is given as \[{{y}^{2}}=x+2\].
It is said in the question that the line cuts the parabola at points \[A\] and \[B\]. A point \[P\] with coordinates \[\left( \sqrt{3},0 \right)\] is also given. So, we can plot the graph with all the details as shown below,
We need to find the values of \[PA\] and \[PB\] to solve the question. \[PA\] and \[PB\] represent the distance of the line joined by the points \[P,A\] and \[P,B\] respectively.
The parametric form of a straight line passing through the point $\left( {{x}_{1}},{{y}_{1}} \right)$ and making an angle of \[\theta \] with the positive direction of the x-axis is given by,
\[\dfrac{x-{{x}_{1}}}{\cos \theta }=\dfrac{y-{{y}_{1}}}{\sin \theta }=r\ldots \ldots \ldots (i)\]
where \[r\] is the distance between the two points with coordinates $\left( x,y \right)$ and $\left( {{x}_{1}},{{y}_{1}} \right)$.
In this question, \[PA\] and \[PB\] are equivalent to the distance $r$ mentioned above.
We have the coordinates of the point $\left( {{x}_{1}},{{y}_{1}} \right)=\left( \sqrt{3},0 \right)$. So, the first step is to find the angle \[\theta \].
For that, we need to consider the equation of the line and rearrange it in the slope-intercept form,
\[y-\sqrt{3}x+3=0\]
\[y=\sqrt{3}x-3\]
Comparing it with the slope-intercept form given by \[y=mx+c\], we get the slope as \[m=\sqrt{3}=\tan \theta \].
The angle \[\theta \] can hence be computed as below,
\[\begin{align}
& \tan \theta =\sqrt{3} \\
& \theta ={{\tan }^{-1}}\sqrt{3} \\
& \theta =60{}^\circ \\
\end{align}\]
Now substituting the obtained results in the equation \[(i)\],
\[\dfrac{x-\sqrt{3}}{\cos 60{}^\circ }=\dfrac{y-0}{\sin 60{}^\circ }=r\]
Substituting the values of \[\cos 60{}^\circ =\dfrac{1}{2},\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\], we get,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
Equating both \[x\] and \[y\] to $r$,
\[\dfrac{x-\sqrt{3}}{\dfrac{1}{2}}=r,\dfrac{y-0}{\dfrac{\sqrt{3}}{2}}=r\]
\[\begin{align}
& x-\sqrt{3}=\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
& x=\sqrt{3}+\dfrac{r}{2},y=\dfrac{\sqrt{3}}{2}r \\
\end{align}\]
So, we have the coordinates of the point, \[A\] or \[B\] as \[\left( \sqrt{3}+\dfrac{r}{2},\dfrac{\sqrt{3}}{2}r \right)\].
As per the question, we know that this point cuts the parabola \[{{y}^{2}}=x+2\], so it can be substituted in the equation for the parabola as,
\[\begin{align}
& {{\left( \dfrac{\sqrt{3}}{2}r \right)}^{2}}=\left( \sqrt{3}+\dfrac{r}{2} \right)+2 \\
& \dfrac{3{{r}^{2}}}{4}=\dfrac{r}{2}+\left( \sqrt{3}+2 \right) \\
& \dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0 \\
\end{align}\]
This is in the form of a quadratic equation in $r$, so we can get the values of $r$ using the formula as,
\[\begin{align}
& r=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\
& r=\dfrac{-\left( -\dfrac{1}{2} \right)\pm \sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}-4\times \left( \dfrac{3}{4} \right)\times -\left( \sqrt{3}+2 \right)}}{2\left( \dfrac{3}{4} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}+\left( \dfrac{12}{4} \right)\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Taking $\dfrac{1}{4}$ outside from the root,
\[\begin{align}
& r=\dfrac{\dfrac{1}{2}\pm \sqrt{\dfrac{1}{4}\left( 1+12\left( \sqrt{3}+2 \right) \right)}}{\left( \dfrac{3}{2} \right)} \\
& r=\dfrac{\dfrac{1}{2}\pm \dfrac{1}{2}\sqrt{1+12\left( \sqrt{3}+2 \right)}}{\left( \dfrac{3}{2} \right)} \\
\end{align}\]
Cancelling out $\dfrac{1}{2}$,
\[r=\dfrac{1\pm \sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Therefore, we have the roots as,
\[\begin{align}
& PA=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
& PB=\dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3} \\
\end{align}\]
Now, we can compute \[PA.PB\] as,
\[PA.PB=\dfrac{1+\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\times \dfrac{1-\sqrt{1+12\left( \sqrt{3}+2 \right)}}{3}\]
Applying the identity \[\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}\],
\[\begin{align}
& PA.PB=\dfrac{1}{9}\times \left[ {{1}^{2}}-{{\sqrt{1+12\left( \sqrt{3}+2 \right)}}^{2}} \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ 1-1-12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{1}{9}\times \left[ -12\left( \sqrt{3}+2 \right) \right] \\
& PA.PB=\dfrac{-12}{9}\times \left( \sqrt{3}+2 \right) \\
& PA.PB=\dfrac{-4}{3}\times \left( \sqrt{3}+2 \right) \\
\end{align}\]
We have to consider the modulus for the distance, so we get the value of \[PA.PB\] as \[\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|=\dfrac{4\left( \sqrt{3}+2 \right)}{3}\].
Hence option (a) is the correct answer.
Note: The last portion of the solution can be done more easily by using the fact that the product of the roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] can be obtained as \[\dfrac{c}{a}\]. So, for this question,$\dfrac{3{{r}^{2}}}{4}-\dfrac{r}{2}-\left( \sqrt{3}+2 \right)=0$, the product of the roots \[PA\] and \[PB\] can be obtained as \[\begin{align}
& PA.PB=\dfrac{-\left( \sqrt{3}+2 \right)}{\dfrac{3}{4}} \\
& PA.PB=\dfrac{-4\left( \sqrt{3}+2 \right)}{3} \\
& PA.PB=\left| \dfrac{-4\left( \sqrt{3}+2 \right)}{3} \right|\Rightarrow \dfrac{4\left( \sqrt{3}+2 \right)}{3} \\
\end{align}\]
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

