
If the ${K}_{b}$ value in the hydrolysis reaction, ${ B }^{ + }\quad +\quad { H }_{ 2 }O\quad \longrightarrow \quad BOH\quad +\quad { H }^{ + }$ is $1.0 \times {10}^{-6}$, then the hydrolysis constant of the salt would be:
A. $1.0 \times {10}^{-6}$
B. $1.0 \times {10}^{-7}$
C. $1.0 \times {10}^{-8}$
D. $1.0 \times {10}^{-9}$
Answer
578.7k+ views
Hint: The base dissociation constant is a measure of the extent to which a base dissociates into its component ions in water. Hydrolysis constant can be defined as the equilibrium constant for a hydrolysis reaction. The base dissociation is inversely proportional to the hydrolysis constant.
Complete step by step answer:
> ${K}_{b}$ is the base dissociation constant of the reaction. It tells us how completely the base dissociates into its component ions in water. The larger the value of ${K}_{b}$ indicates a high level of dissociation of a strong base.
> Pure water also undergoes auto-ionization to form ${H}_{3}{O}^{+}$ and ${OH}^{-}$ ions and this reaction in which auto-ionization takes place always stays in equilibrium. Therefore, the equilibrium constant for auto-ionization of water is known as ${K}_{w}$ and its value is constant at a particular temperature. At room temperature its value is $1.0 \times {10}^{-14}$.
> Hydrolysis constant is the equilibrium constant of a hydrolysis reaction and it is denoted by ${K}_{H}$. The hydrolysis constant is related to the ionic product of water, ${K}_{w}$ and the base dissociation, ${K}_{b}$.
This relation is given as follows.
${ K }_{ H }\quad =\quad \dfrac { { K }_{ w } }{ { K }_{ b } }$
Now, for the given hydrolysis reaction:
${ B }^{ + }\quad +\quad { H }_{ 2 }O\quad \longrightarrow \quad BOH\quad +\quad { H }^{ + }$
Now, the expression for hydrolysis constant is:
${ K }_{ H }\quad =\quad \dfrac { { K }_{ w } }{ { K }_{ b } }$ ------(1)
And is also given that ${K}_{b} = 1.0 \times {1.0}^{-6}$ and we know that the value of ${K}_{w}$ is $1.0 \times {10}^{-14}$. Substituting, these values in equation (1), we get
${ K }_{ H }\quad =\quad \dfrac { 1.0\quad \times \quad { 10 }^{ -14 } }{ 1.0\quad \times \quad { 10 }^{ -6 } }$
${ K }_{ H }\quad =\quad 1.0\quad \times \quad { 10 }^{ -8 }$
Therefore, the value of hydrolysis constant is $1.0 \times {10}^{-8}$.
Hence, the correct answer is option (C).
Note: The auto-ionization reaction always stays in equilibrium because the component ions after the dissociation of water are hydronium ion and hydroxide ion. And the hydronium ion is a very strong acid and the hydroxide ion is a very strong base. Thus they associate again to form water molecules. So, the water molecules and ions always stay in equilibrium.
Complete step by step answer:
> ${K}_{b}$ is the base dissociation constant of the reaction. It tells us how completely the base dissociates into its component ions in water. The larger the value of ${K}_{b}$ indicates a high level of dissociation of a strong base.
> Pure water also undergoes auto-ionization to form ${H}_{3}{O}^{+}$ and ${OH}^{-}$ ions and this reaction in which auto-ionization takes place always stays in equilibrium. Therefore, the equilibrium constant for auto-ionization of water is known as ${K}_{w}$ and its value is constant at a particular temperature. At room temperature its value is $1.0 \times {10}^{-14}$.
> Hydrolysis constant is the equilibrium constant of a hydrolysis reaction and it is denoted by ${K}_{H}$. The hydrolysis constant is related to the ionic product of water, ${K}_{w}$ and the base dissociation, ${K}_{b}$.
This relation is given as follows.
${ K }_{ H }\quad =\quad \dfrac { { K }_{ w } }{ { K }_{ b } }$
Now, for the given hydrolysis reaction:
${ B }^{ + }\quad +\quad { H }_{ 2 }O\quad \longrightarrow \quad BOH\quad +\quad { H }^{ + }$
Now, the expression for hydrolysis constant is:
${ K }_{ H }\quad =\quad \dfrac { { K }_{ w } }{ { K }_{ b } }$ ------(1)
And is also given that ${K}_{b} = 1.0 \times {1.0}^{-6}$ and we know that the value of ${K}_{w}$ is $1.0 \times {10}^{-14}$. Substituting, these values in equation (1), we get
${ K }_{ H }\quad =\quad \dfrac { 1.0\quad \times \quad { 10 }^{ -14 } }{ 1.0\quad \times \quad { 10 }^{ -6 } }$
${ K }_{ H }\quad =\quad 1.0\quad \times \quad { 10 }^{ -8 }$
Therefore, the value of hydrolysis constant is $1.0 \times {10}^{-8}$.
Hence, the correct answer is option (C).
Note: The auto-ionization reaction always stays in equilibrium because the component ions after the dissociation of water are hydronium ion and hydroxide ion. And the hydronium ion is a very strong acid and the hydroxide ion is a very strong base. Thus they associate again to form water molecules. So, the water molecules and ions always stay in equilibrium.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

