
If the integral $\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=1-\dfrac{1}{\sqrt{2}}$ , (k>0) then find the value of k.
Answer
591.3k+ views
Hint: We start solving this problem first by considering the left-hand side of the given equation. Then we take out $\sqrt{2k}$ outside from the integral as it is a constant. We change $\tan \theta $ and $\sec \theta $ in terms of $\sin \theta $ and $\cos \theta $. Then we consider $\cos \theta $ as some other variable $t$ and we change the limits according to $t$. Then we solve the obtained integral. Hence, we get the value of $k$.
Complete step-by-step answer:
Let us consider the given equation $\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=1-\dfrac{1}{\sqrt{2}}.................\left( 1 \right)$
Now, we consider the left-hand side of the given equation, $\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}$.
Let us take out $\sqrt{2k}$ outside from the integral as it is a constant.
$\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{\sec \theta }}}$
Let us consider the formula, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$.
By using the above formula, we change $\tan \theta $ and $\sec \theta $ in terms of $\sin \theta $ and $\cos \theta $, we get,
$\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{\sec \theta }}} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\left( \dfrac{\sin \theta }{\cos \theta } \right)}{\sqrt{\dfrac{1}{\cos \theta }}}} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\sin \theta }{\cos \theta }\times \sqrt{\cos \theta }} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\sin \theta }{\sqrt{\cos \theta }}} \\
\end{align}$
Now, let us consider $\cos \theta =t$, by differentiating it on both the sides, we get,
$\begin{align}
& -\sin \theta d\theta =dt \\
& \Rightarrow \sin \theta d\theta =-dt \\
\end{align}$
Now, let us change the limits of the integral.
As the lower limit is 0 for $\theta $, the lower limit of the new integral is $t=\cos \theta =\cos \left( 0 \right)=1$ and
As the upper limit is $\dfrac{\pi }{3}$ for $\theta $, the upper limit for the new integral is $t=\cos \theta =\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}$.
So, we get,
$\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{1}^{\dfrac{1}{2}}{\dfrac{-1}{\sqrt{t}}dt}$
Let us consider the formula, $\int{\dfrac{1}{\sqrt{x}}}=2\sqrt{x}$.
By using the above formula, we get,
$\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\left[ -2\sqrt{t} \right]_{1}^{\dfrac{1}{2}} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ 2\sqrt{t} \right]_{1}^{\dfrac{1}{2}} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ 2\sqrt{\dfrac{1}{2}}-2\sqrt{1} \right] \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ \dfrac{2}{\sqrt{2}}-2 \right] \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ \sqrt{2}-2 \right] \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2}\sqrt{k}}\left[ \sqrt{2}-2 \right] \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]....................\left( 2 \right) \\
\end{align}$
So, from equation (1) and equation (2), we get,
\[\begin{align}
& \dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]=1-\dfrac{1}{\sqrt{2}} \\
& \\
& \Rightarrow \dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]=\dfrac{\sqrt{2}-1}{\sqrt{2}} \\
& \\
& \Rightarrow \dfrac{-1}{\sqrt{k}}=\dfrac{\sqrt{2}-1}{\sqrt{2}}\left( \dfrac{1}{1-\sqrt{2}} \right) \\
& \\
& \Rightarrow \dfrac{1}{\sqrt{k}}=\dfrac{1-\sqrt{2}}{\sqrt{2}}\left( \dfrac{1}{1-\sqrt{2}} \right) \\
& \\
& \Rightarrow \dfrac{1}{\sqrt{k}}=\dfrac{1}{\sqrt{2}} \\
& \\
& \Rightarrow k=2 \\
\end{align}\]
Therefore, the value of $k$ is 2.
Hence, the answer is 2.
Note: The possibility of making a mistake in this problem is one may make a mistake by not changing the limits while changing the variable. For example, in this problem, while changing the variable from $\theta $ to $t$, we change the lower limit from 0 to 1 and upper limit from $\dfrac{\pi }{3}$ to $\dfrac{1}{2}$. Otherwise, we get the wrong answer.
Complete step-by-step answer:
Let us consider the given equation $\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=1-\dfrac{1}{\sqrt{2}}.................\left( 1 \right)$
Now, we consider the left-hand side of the given equation, $\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}$.
Let us take out $\sqrt{2k}$ outside from the integral as it is a constant.
$\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{\sec \theta }}}$
Let us consider the formula, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$.
By using the above formula, we change $\tan \theta $ and $\sec \theta $ in terms of $\sin \theta $ and $\cos \theta $, we get,
$\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{\sec \theta }}} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\left( \dfrac{\sin \theta }{\cos \theta } \right)}{\sqrt{\dfrac{1}{\cos \theta }}}} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\sin \theta }{\cos \theta }\times \sqrt{\cos \theta }} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\sin \theta }{\sqrt{\cos \theta }}} \\
\end{align}$
Now, let us consider $\cos \theta =t$, by differentiating it on both the sides, we get,
$\begin{align}
& -\sin \theta d\theta =dt \\
& \Rightarrow \sin \theta d\theta =-dt \\
\end{align}$
Now, let us change the limits of the integral.
As the lower limit is 0 for $\theta $, the lower limit of the new integral is $t=\cos \theta =\cos \left( 0 \right)=1$ and
As the upper limit is $\dfrac{\pi }{3}$ for $\theta $, the upper limit for the new integral is $t=\cos \theta =\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}$.
So, we get,
$\int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\int\limits_{1}^{\dfrac{1}{2}}{\dfrac{-1}{\sqrt{t}}dt}$
Let us consider the formula, $\int{\dfrac{1}{\sqrt{x}}}=2\sqrt{x}$.
By using the above formula, we get,
$\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{1}{\sqrt{2k}}\left[ -2\sqrt{t} \right]_{1}^{\dfrac{1}{2}} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ 2\sqrt{t} \right]_{1}^{\dfrac{1}{2}} \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ 2\sqrt{\dfrac{1}{2}}-2\sqrt{1} \right] \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ \dfrac{2}{\sqrt{2}}-2 \right] \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2k}}\left[ \sqrt{2}-2 \right] \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{2}\sqrt{k}}\left[ \sqrt{2}-2 \right] \\
& \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{3}}{\dfrac{\tan \theta }{\sqrt{2k\sec \theta }}}=\dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]....................\left( 2 \right) \\
\end{align}$
So, from equation (1) and equation (2), we get,
\[\begin{align}
& \dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]=1-\dfrac{1}{\sqrt{2}} \\
& \\
& \Rightarrow \dfrac{-1}{\sqrt{k}}\left[ 1-\sqrt{2} \right]=\dfrac{\sqrt{2}-1}{\sqrt{2}} \\
& \\
& \Rightarrow \dfrac{-1}{\sqrt{k}}=\dfrac{\sqrt{2}-1}{\sqrt{2}}\left( \dfrac{1}{1-\sqrt{2}} \right) \\
& \\
& \Rightarrow \dfrac{1}{\sqrt{k}}=\dfrac{1-\sqrt{2}}{\sqrt{2}}\left( \dfrac{1}{1-\sqrt{2}} \right) \\
& \\
& \Rightarrow \dfrac{1}{\sqrt{k}}=\dfrac{1}{\sqrt{2}} \\
& \\
& \Rightarrow k=2 \\
\end{align}\]
Therefore, the value of $k$ is 2.
Hence, the answer is 2.
Note: The possibility of making a mistake in this problem is one may make a mistake by not changing the limits while changing the variable. For example, in this problem, while changing the variable from $\theta $ to $t$, we change the lower limit from 0 to 1 and upper limit from $\dfrac{\pi }{3}$ to $\dfrac{1}{2}$. Otherwise, we get the wrong answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

