# If the harmonic means between two positive numbers is to their Geometric means as 12:13, the numbers are in the ratio.

A. 12:13

B. $\dfrac{1}{12}:\dfrac{1}{13}$

C. 4:9

D. $\dfrac{1}{4}:\dfrac{1}{9}$

Answer

Verified

362.1k+ views

Hint: We will compare the ratio between Harmonic mean and Geometric mean by using their general equations and try to solve this question.

Complete step-by-step Solution:

We can use the below formulas to solve the question.

Harmonic mean $=\dfrac{2ab}{a+b}$

Geometric mean $=\sqrt{ab}$

It is given in the question that the harmonic mean between two positive numbers to their geometric mean is 12:13.

We have to find the ratio of the numbers.

Let us assume the two positive numbers as a, b.

Let us consider the case of harmonic mean first. The formula for the harmonic mean for two numbers a and b is given by,

Harmonic mean $=\dfrac{2ab}{a+b}$

Now, let us consider the case of geometric mean. The formula for the geometric mean of two numbers a and b is given by,

Geometric mean $=\sqrt{ab}$

So, from question, we have;

$\dfrac{\text{Harmonic mean}}{\text{Geometric mean}}=\dfrac{12}{13}$

Substituting the known formulas of harmonic mean and geometric mean in the above equation we get,

$\dfrac{\dfrac{2ab}{a+b}}{\sqrt{ab}}=\dfrac{12}{13}$

Multiplying and dividing the LHS with $\sqrt{ab}$, we get,

$\dfrac{2\sqrt{ab}}{a+b}=\dfrac{12}{13}$

Taking 2 to RHS and simplifying further, we get,

$\begin{align}

& \Rightarrow \dfrac{\sqrt{ab}}{a+b}=\dfrac{12}{2\times 13} \\

& \Rightarrow \dfrac{\sqrt{ab}}{a+b}=\dfrac{6}{13} \\

& \Rightarrow \dfrac{a+b}{\sqrt{ab}}=\dfrac{13}{6} \\

& \Rightarrow \dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}}=\dfrac{13}{6} \\

\end{align}$

Simplify the terms on LHS using the roots, we get,

$\Rightarrow \sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}=\dfrac{13}{6}.............\left( 1 \right)$

Let us assume $x=\sqrt{\dfrac{a}{b}}$

Substituting $x=\sqrt{\dfrac{a}{b}}$ in equation (1), we get,

$\begin{align}

& \Rightarrow x+\dfrac{1}{x}=\dfrac{13}{6}............\left( 2 \right) \\

& \Rightarrow \dfrac{{{x}^{2}}+1}{x}=\dfrac{13}{6} \\

\end{align}$

On cross multiplying, we get,

$\begin{align}

& 6{{x}^{2}}+6=13x \\

& \Rightarrow 6{{x}^{2}}-13x+6=0 \\

\end{align}$

We have obtained a quadratic equation. We can solve the same using the middle term split method as shown below,

$\begin{align}

& \Rightarrow 6{{x}^{2}}-9x-4x+6=0 \\

& \Rightarrow 6x\left( x-\dfrac{3}{2} \right)-4\left( x-\dfrac{3}{2} \right)=0 \\

\end{align}$

Taking $\left( x-\dfrac{3}{2} \right)$ common from the above equation, we get,

$\Rightarrow \left( 6x-4 \right)\left( x-\dfrac{3}{2} \right)=0$

Hence, we have either, $6x-4=0\ \ or\ \ x-\dfrac{3}{2}=0$

$\begin{align}

& \Rightarrow x=\dfrac{4}{6}\ or\ x=\dfrac{3}{2} \\

& \Rightarrow x=\dfrac{2}{3}\ or\ x=\dfrac{3}{2} \\

\end{align}$

So, $x=\dfrac{3}{2}\ or\ x=\dfrac{2}{3}$

Since we had assumed $x=\sqrt{\dfrac{a}{b}}$. We can now find the ratio of numbers.

Therefore, we have $x=\sqrt{\dfrac{a}{b}}=\dfrac{3}{2}\ \ or\ \ x=\sqrt{\dfrac{a}{b}}=\dfrac{2}{3}\ $

We can take the square and write,

$\begin{align}

& {{x}^{2}}=\dfrac{a}{b}=\dfrac{9}{4} \\

& or \\

& {{x}^{2}}=\dfrac{a}{b}=\dfrac{4}{9} \\

\end{align}$

So, the ratio can be $\dfrac{9}{4}\ \ or\ \ \dfrac{4}{9}$.

Now, in option only $\dfrac{4}{9}$ is given. So, we will consider $\dfrac{4}{9}$ as the correct answer.

Therefore, option (C) 4:9 is the correct option.

Note: There is an alternate method to solve this question. It is shown as below,

Given,

$\begin{align}

& \dfrac{HM}{GM}=\dfrac{12}{13} \\

& \Rightarrow \dfrac{\dfrac{2ab}{a+b}}{\sqrt{a.b}}=\dfrac{12}{13} \\

\end{align}$

Squaring and simplifying both sides, we get,

$\begin{align}

& \Rightarrow \dfrac{ab}{{{\left( a+b \right)}^{2}}}=\dfrac{36}{169} \\

& \Rightarrow \dfrac{ab}{{{a}^{2}}+{{b}^{2}}+2ab}=\dfrac{36}{169} \\

& \Rightarrow 169ab=36{{a}^{2}}+36{{b}^{2}}+72ab \\

& \Rightarrow 36{{a}^{2}}+36{{b}^{2}}-97ab=0 \\

& \Rightarrow 36{{a}^{2}}-16ab-81ab+36{{b}^{2}}=0 \\

& \Rightarrow \left( 9a-4b \right)\left( 4a+9b \right)=0 \\

\end{align}$

Taking positive value,

$\begin{align}

& \Rightarrow \left( 9a-4b \right)=0 \\

& \Rightarrow 9a=4b \\

& \Rightarrow \dfrac{a}{b}=\dfrac{4}{9} \\

& \Rightarrow a:b=4:9 \\

\end{align}$

Complete step-by-step Solution:

We can use the below formulas to solve the question.

Harmonic mean $=\dfrac{2ab}{a+b}$

Geometric mean $=\sqrt{ab}$

It is given in the question that the harmonic mean between two positive numbers to their geometric mean is 12:13.

We have to find the ratio of the numbers.

Let us assume the two positive numbers as a, b.

Let us consider the case of harmonic mean first. The formula for the harmonic mean for two numbers a and b is given by,

Harmonic mean $=\dfrac{2ab}{a+b}$

Now, let us consider the case of geometric mean. The formula for the geometric mean of two numbers a and b is given by,

Geometric mean $=\sqrt{ab}$

So, from question, we have;

$\dfrac{\text{Harmonic mean}}{\text{Geometric mean}}=\dfrac{12}{13}$

Substituting the known formulas of harmonic mean and geometric mean in the above equation we get,

$\dfrac{\dfrac{2ab}{a+b}}{\sqrt{ab}}=\dfrac{12}{13}$

Multiplying and dividing the LHS with $\sqrt{ab}$, we get,

$\dfrac{2\sqrt{ab}}{a+b}=\dfrac{12}{13}$

Taking 2 to RHS and simplifying further, we get,

$\begin{align}

& \Rightarrow \dfrac{\sqrt{ab}}{a+b}=\dfrac{12}{2\times 13} \\

& \Rightarrow \dfrac{\sqrt{ab}}{a+b}=\dfrac{6}{13} \\

& \Rightarrow \dfrac{a+b}{\sqrt{ab}}=\dfrac{13}{6} \\

& \Rightarrow \dfrac{a}{\sqrt{ab}}+\dfrac{b}{\sqrt{ab}}=\dfrac{13}{6} \\

\end{align}$

Simplify the terms on LHS using the roots, we get,

$\Rightarrow \sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}}=\dfrac{13}{6}.............\left( 1 \right)$

Let us assume $x=\sqrt{\dfrac{a}{b}}$

Substituting $x=\sqrt{\dfrac{a}{b}}$ in equation (1), we get,

$\begin{align}

& \Rightarrow x+\dfrac{1}{x}=\dfrac{13}{6}............\left( 2 \right) \\

& \Rightarrow \dfrac{{{x}^{2}}+1}{x}=\dfrac{13}{6} \\

\end{align}$

On cross multiplying, we get,

$\begin{align}

& 6{{x}^{2}}+6=13x \\

& \Rightarrow 6{{x}^{2}}-13x+6=0 \\

\end{align}$

We have obtained a quadratic equation. We can solve the same using the middle term split method as shown below,

$\begin{align}

& \Rightarrow 6{{x}^{2}}-9x-4x+6=0 \\

& \Rightarrow 6x\left( x-\dfrac{3}{2} \right)-4\left( x-\dfrac{3}{2} \right)=0 \\

\end{align}$

Taking $\left( x-\dfrac{3}{2} \right)$ common from the above equation, we get,

$\Rightarrow \left( 6x-4 \right)\left( x-\dfrac{3}{2} \right)=0$

Hence, we have either, $6x-4=0\ \ or\ \ x-\dfrac{3}{2}=0$

$\begin{align}

& \Rightarrow x=\dfrac{4}{6}\ or\ x=\dfrac{3}{2} \\

& \Rightarrow x=\dfrac{2}{3}\ or\ x=\dfrac{3}{2} \\

\end{align}$

So, $x=\dfrac{3}{2}\ or\ x=\dfrac{2}{3}$

Since we had assumed $x=\sqrt{\dfrac{a}{b}}$. We can now find the ratio of numbers.

Therefore, we have $x=\sqrt{\dfrac{a}{b}}=\dfrac{3}{2}\ \ or\ \ x=\sqrt{\dfrac{a}{b}}=\dfrac{2}{3}\ $

We can take the square and write,

$\begin{align}

& {{x}^{2}}=\dfrac{a}{b}=\dfrac{9}{4} \\

& or \\

& {{x}^{2}}=\dfrac{a}{b}=\dfrac{4}{9} \\

\end{align}$

So, the ratio can be $\dfrac{9}{4}\ \ or\ \ \dfrac{4}{9}$.

Now, in option only $\dfrac{4}{9}$ is given. So, we will consider $\dfrac{4}{9}$ as the correct answer.

Therefore, option (C) 4:9 is the correct option.

Note: There is an alternate method to solve this question. It is shown as below,

Given,

$\begin{align}

& \dfrac{HM}{GM}=\dfrac{12}{13} \\

& \Rightarrow \dfrac{\dfrac{2ab}{a+b}}{\sqrt{a.b}}=\dfrac{12}{13} \\

\end{align}$

Squaring and simplifying both sides, we get,

$\begin{align}

& \Rightarrow \dfrac{ab}{{{\left( a+b \right)}^{2}}}=\dfrac{36}{169} \\

& \Rightarrow \dfrac{ab}{{{a}^{2}}+{{b}^{2}}+2ab}=\dfrac{36}{169} \\

& \Rightarrow 169ab=36{{a}^{2}}+36{{b}^{2}}+72ab \\

& \Rightarrow 36{{a}^{2}}+36{{b}^{2}}-97ab=0 \\

& \Rightarrow 36{{a}^{2}}-16ab-81ab+36{{b}^{2}}=0 \\

& \Rightarrow \left( 9a-4b \right)\left( 4a+9b \right)=0 \\

\end{align}$

Taking positive value,

$\begin{align}

& \Rightarrow \left( 9a-4b \right)=0 \\

& \Rightarrow 9a=4b \\

& \Rightarrow \dfrac{a}{b}=\dfrac{4}{9} \\

& \Rightarrow a:b=4:9 \\

\end{align}$

Last updated date: 02nd Oct 2023

â€¢

Total views: 362.1k

â€¢

Views today: 6.62k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE