Answer
Verified
475.2k+ views
Hint: To solve the question, we have to apply the formula that \[{{a}^{n}}-{{b}^{n}}\] is divisible by (a – b). Apply the formula to all terms of the expression to find common divisible factors of the expression.
Complete step-by-step answer:
We know that \[{{a}^{n}}-{{b}^{n}}\] is divisible by (a – b). By applying the formula we get
\[{{121}^{n}}-{{25}^{n}}\] is divisible by (121 - 25) = 96
\[{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]is divisible by (1900 – (-4)) = 1900 + 4 = 1904
We know \[96=16\times 6,1904=16\times 119\]
Thus, the common factor of 96, 1904 is 16.
Thus, 16 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
By applying the above formula for another set of terms of expression, we get
\[{{121}^{n}}-{{\left( -4 \right)}^{n}}\]is divisible by (121 – (-4)) = 121 + 4 = 125
\[{{1900}^{n}}-{{25}^{n}}\]is divisible by (1900 - 25) = 1875
We know \[1875=15\times 125\]
Thus, the common factor of 125, 1875 is 125.
Thus, 125 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
Thus, we get both 16 and 125can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
This implies that the product of 16 and 125 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
We know that product of 16 and 125 = \[16\times 125=2000\]
Thus, 2000 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
Hence, option (b) is the right answer.
Note: The possibility of mistake can be interpreted that 1904 divides the given expression because it divides \[{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]. But it is not divisible by the other part of the expression, only common factors can divide the whole expression. The alternative to solve the questions is equal to substitute n = 1 in the given expression, the calculated value is equal to 2000. Hence, the other options can be eliminated.
Complete step-by-step answer:
We know that \[{{a}^{n}}-{{b}^{n}}\] is divisible by (a – b). By applying the formula we get
\[{{121}^{n}}-{{25}^{n}}\] is divisible by (121 - 25) = 96
\[{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]is divisible by (1900 – (-4)) = 1900 + 4 = 1904
We know \[96=16\times 6,1904=16\times 119\]
Thus, the common factor of 96, 1904 is 16.
Thus, 16 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
By applying the above formula for another set of terms of expression, we get
\[{{121}^{n}}-{{\left( -4 \right)}^{n}}\]is divisible by (121 – (-4)) = 121 + 4 = 125
\[{{1900}^{n}}-{{25}^{n}}\]is divisible by (1900 - 25) = 1875
We know \[1875=15\times 125\]
Thus, the common factor of 125, 1875 is 125.
Thus, 125 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
Thus, we get both 16 and 125can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
This implies that the product of 16 and 125 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
We know that product of 16 and 125 = \[16\times 125=2000\]
Thus, 2000 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
Hence, option (b) is the right answer.
Note: The possibility of mistake can be interpreted that 1904 divides the given expression because it divides \[{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]. But it is not divisible by the other part of the expression, only common factors can divide the whole expression. The alternative to solve the questions is equal to substitute n = 1 in the given expression, the calculated value is equal to 2000. Hence, the other options can be eliminated.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell