If the given expression \[n\in N\],\[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\] then is divisible by which one of the following?
a)1904
b)2000
c)2002
d)2006
Last updated date: 17th Mar 2023
•
Total views: 303.3k
•
Views today: 3.82k
Answer
303.3k+ views
Hint: To solve the question, we have to apply the formula that \[{{a}^{n}}-{{b}^{n}}\] is divisible by (a – b). Apply the formula to all terms of the expression to find common divisible factors of the expression.
Complete step-by-step answer:
We know that \[{{a}^{n}}-{{b}^{n}}\] is divisible by (a – b). By applying the formula we get
\[{{121}^{n}}-{{25}^{n}}\] is divisible by (121 - 25) = 96
\[{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]is divisible by (1900 – (-4)) = 1900 + 4 = 1904
We know \[96=16\times 6,1904=16\times 119\]
Thus, the common factor of 96, 1904 is 16.
Thus, 16 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
By applying the above formula for another set of terms of expression, we get
\[{{121}^{n}}-{{\left( -4 \right)}^{n}}\]is divisible by (121 – (-4)) = 121 + 4 = 125
\[{{1900}^{n}}-{{25}^{n}}\]is divisible by (1900 - 25) = 1875
We know \[1875=15\times 125\]
Thus, the common factor of 125, 1875 is 125.
Thus, 125 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
Thus, we get both 16 and 125can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
This implies that the product of 16 and 125 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
We know that product of 16 and 125 = \[16\times 125=2000\]
Thus, 2000 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
Hence, option (b) is the right answer.
Note: The possibility of mistake can be interpreted that 1904 divides the given expression because it divides \[{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]. But it is not divisible by the other part of the expression, only common factors can divide the whole expression. The alternative to solve the questions is equal to substitute n = 1 in the given expression, the calculated value is equal to 2000. Hence, the other options can be eliminated.
Complete step-by-step answer:
We know that \[{{a}^{n}}-{{b}^{n}}\] is divisible by (a – b). By applying the formula we get
\[{{121}^{n}}-{{25}^{n}}\] is divisible by (121 - 25) = 96
\[{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]is divisible by (1900 – (-4)) = 1900 + 4 = 1904
We know \[96=16\times 6,1904=16\times 119\]
Thus, the common factor of 96, 1904 is 16.
Thus, 16 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
By applying the above formula for another set of terms of expression, we get
\[{{121}^{n}}-{{\left( -4 \right)}^{n}}\]is divisible by (121 – (-4)) = 121 + 4 = 125
\[{{1900}^{n}}-{{25}^{n}}\]is divisible by (1900 - 25) = 1875
We know \[1875=15\times 125\]
Thus, the common factor of 125, 1875 is 125.
Thus, 125 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
Thus, we get both 16 and 125can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
This implies that the product of 16 and 125 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
We know that product of 16 and 125 = \[16\times 125=2000\]
Thus, 2000 can divide the expression \[{{121}^{n}}-{{25}^{n}}+{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]
Hence, option (b) is the right answer.
Note: The possibility of mistake can be interpreted that 1904 divides the given expression because it divides \[{{1900}^{n}}-{{\left( -4 \right)}^{n}}\]. But it is not divisible by the other part of the expression, only common factors can divide the whole expression. The alternative to solve the questions is equal to substitute n = 1 in the given expression, the calculated value is equal to 2000. Hence, the other options can be eliminated.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
