
If the fractional part of the number \[\dfrac{{{2^{403}}}}{{15}}\] is \[\dfrac{k}{{15}}\] , then k is equal to
Answer
583.5k+ views
Hint: We will use binomial expansion for the given number to find the fractional part of the number and then we will compare it with the given value to get the value of k.
The binomial theorem describes the algebraic expansion of powers of a binomial.
Complete step by step solution:
The given number is \[\dfrac{{{2^{403}}}}{{15}}\]
And we are given that :
\[\dfrac{{{2^{403}}}}{{15}} = \dfrac{k}{{15}}..........\left( 1 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Therefore, the numerator \[{2^{403}}\] can be further written as:
\[{2^{403}} = {2^3} \times {2^{400}}............\left( 2 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Now according to another property of exponents :
\[{\left( {{a^b}} \right)^c} = {\left( a \right)^{bc}}\]
Applying this property in equation1 we get:
\[{2^{403}} = {2^3} \times {\left( {{2^4}} \right)^{100}}\]
Further solving it we get:
\[
{2^{403}} = {2^3} \times {\left( {16} \right)^{100}} \\
{2^{403}} = 8 \times {\left( {1 + 15} \right)^{100}} \\
\]
Now using binomial expansion we get:
\[
{2^{403}} = 8 \times \left[ {{}^{100}C0{{\left( {15} \right)}^0}{{\left( 1 \right)}^{100}} + {}^{100}C1{{\left( {15} \right)}^1}{{\left( 1 \right)}^{99}} + {}^{100}C2{{\left( {15} \right)}^2}{{\left( 1 \right)}^{98}} + ............... + {}^{100}C100{{\left( {15} \right)}^{100}}{{\left( 1 \right)}^0}} \right] \\
{2^{403}} = 8 \times \left[ {1 + {}^{100}C1\left( {15} \right) + {}^{100}C2{{\left( {15} \right)}^2} + ................ + {}^{100}C100{{\left( {15} \right)}^{100}}} \right] \\
{2^{403}} = 8 + 8 \times \left( {15} \right) + 8 \times {}^{100}C2{\left( {15} \right)^2} + ................ + 8 \times {}^{100}C100{\left( {15} \right)^{100}} \\
{2^{403}} = 8 + 8 \times \left( {15} \right)\left[ \lambda \right] \\
\]
Where \[\lambda = {}^{100}C2\left( {15} \right) + ................ + {}^{100}C100{\left( {15} \right)^{99}}\]
Now dividing the above equation by 15 we get:
\[
\dfrac{{{2^{403}}}}{{15}} = \dfrac{{8 + 8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + \dfrac{{8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + 8\lambda \\
\]
Now the since fractional part in the above equation is \[\dfrac{8}{{15}}\]
Hence on comparing it with the value given we get:
\[
\dfrac{8}{{15}} = \dfrac{k}{{15}} \\
k = 8 \\
\]
Hence the value of k is 8.
Therefore (B) is the correct option.
Note:
The binomial expansion of two numbers is given by:
\[{\left( {a + b} \right)^n} = {}^nC0{\left( a \right)^0}{\left( b \right)^n} + {}^nC1{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^nC2{\left( a \right)^2}{\left( b \right)^{n - 2}} + ............... + {}^nC100{\left( a \right)^{100}}{\left( b \right)^0}\]
The binomial theorem describes the algebraic expansion of powers of a binomial.
Complete step by step solution:
The given number is \[\dfrac{{{2^{403}}}}{{15}}\]
And we are given that :
\[\dfrac{{{2^{403}}}}{{15}} = \dfrac{k}{{15}}..........\left( 1 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Therefore, the numerator \[{2^{403}}\] can be further written as:
\[{2^{403}} = {2^3} \times {2^{400}}............\left( 2 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Now according to another property of exponents :
\[{\left( {{a^b}} \right)^c} = {\left( a \right)^{bc}}\]
Applying this property in equation1 we get:
\[{2^{403}} = {2^3} \times {\left( {{2^4}} \right)^{100}}\]
Further solving it we get:
\[
{2^{403}} = {2^3} \times {\left( {16} \right)^{100}} \\
{2^{403}} = 8 \times {\left( {1 + 15} \right)^{100}} \\
\]
Now using binomial expansion we get:
\[
{2^{403}} = 8 \times \left[ {{}^{100}C0{{\left( {15} \right)}^0}{{\left( 1 \right)}^{100}} + {}^{100}C1{{\left( {15} \right)}^1}{{\left( 1 \right)}^{99}} + {}^{100}C2{{\left( {15} \right)}^2}{{\left( 1 \right)}^{98}} + ............... + {}^{100}C100{{\left( {15} \right)}^{100}}{{\left( 1 \right)}^0}} \right] \\
{2^{403}} = 8 \times \left[ {1 + {}^{100}C1\left( {15} \right) + {}^{100}C2{{\left( {15} \right)}^2} + ................ + {}^{100}C100{{\left( {15} \right)}^{100}}} \right] \\
{2^{403}} = 8 + 8 \times \left( {15} \right) + 8 \times {}^{100}C2{\left( {15} \right)^2} + ................ + 8 \times {}^{100}C100{\left( {15} \right)^{100}} \\
{2^{403}} = 8 + 8 \times \left( {15} \right)\left[ \lambda \right] \\
\]
Where \[\lambda = {}^{100}C2\left( {15} \right) + ................ + {}^{100}C100{\left( {15} \right)^{99}}\]
Now dividing the above equation by 15 we get:
\[
\dfrac{{{2^{403}}}}{{15}} = \dfrac{{8 + 8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + \dfrac{{8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + 8\lambda \\
\]
Now the since fractional part in the above equation is \[\dfrac{8}{{15}}\]
Hence on comparing it with the value given we get:
\[
\dfrac{8}{{15}} = \dfrac{k}{{15}} \\
k = 8 \\
\]
Hence the value of k is 8.
Therefore (B) is the correct option.
Note:
The binomial expansion of two numbers is given by:
\[{\left( {a + b} \right)^n} = {}^nC0{\left( a \right)^0}{\left( b \right)^n} + {}^nC1{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^nC2{\left( a \right)^2}{\left( b \right)^{n - 2}} + ............... + {}^nC100{\left( a \right)^{100}}{\left( b \right)^0}\]
Recently Updated Pages
How does pollination is achieved in Vallisneria and class 12 biology CBSE

Toluene on reaction with Nbromosuccinimide gives A class 12 chemistry CBSE

Threshold wavelength for a metal having work function class 12 physics CBSE

Write the main constituents of biogas class 12 biology CBSE

Arrange F Cl 0 N in the decreasing order of electronegativity class 12 chemistry CBSE

A ray of light is incident from a denser to a rarer class 12 physics CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

