
If the fractional part of the number \[\dfrac{{{2^{403}}}}{{15}}\] is \[\dfrac{k}{{15}}\] , then k is equal to
Answer
517.5k+ views
Hint: We will use binomial expansion for the given number to find the fractional part of the number and then we will compare it with the given value to get the value of k.
The binomial theorem describes the algebraic expansion of powers of a binomial.
Complete step by step solution:
The given number is \[\dfrac{{{2^{403}}}}{{15}}\]
And we are given that :
\[\dfrac{{{2^{403}}}}{{15}} = \dfrac{k}{{15}}..........\left( 1 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Therefore, the numerator \[{2^{403}}\] can be further written as:
\[{2^{403}} = {2^3} \times {2^{400}}............\left( 2 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Now according to another property of exponents :
\[{\left( {{a^b}} \right)^c} = {\left( a \right)^{bc}}\]
Applying this property in equation1 we get:
\[{2^{403}} = {2^3} \times {\left( {{2^4}} \right)^{100}}\]
Further solving it we get:
\[
{2^{403}} = {2^3} \times {\left( {16} \right)^{100}} \\
{2^{403}} = 8 \times {\left( {1 + 15} \right)^{100}} \\
\]
Now using binomial expansion we get:
\[
{2^{403}} = 8 \times \left[ {{}^{100}C0{{\left( {15} \right)}^0}{{\left( 1 \right)}^{100}} + {}^{100}C1{{\left( {15} \right)}^1}{{\left( 1 \right)}^{99}} + {}^{100}C2{{\left( {15} \right)}^2}{{\left( 1 \right)}^{98}} + ............... + {}^{100}C100{{\left( {15} \right)}^{100}}{{\left( 1 \right)}^0}} \right] \\
{2^{403}} = 8 \times \left[ {1 + {}^{100}C1\left( {15} \right) + {}^{100}C2{{\left( {15} \right)}^2} + ................ + {}^{100}C100{{\left( {15} \right)}^{100}}} \right] \\
{2^{403}} = 8 + 8 \times \left( {15} \right) + 8 \times {}^{100}C2{\left( {15} \right)^2} + ................ + 8 \times {}^{100}C100{\left( {15} \right)^{100}} \\
{2^{403}} = 8 + 8 \times \left( {15} \right)\left[ \lambda \right] \\
\]
Where \[\lambda = {}^{100}C2\left( {15} \right) + ................ + {}^{100}C100{\left( {15} \right)^{99}}\]
Now dividing the above equation by 15 we get:
\[
\dfrac{{{2^{403}}}}{{15}} = \dfrac{{8 + 8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + \dfrac{{8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + 8\lambda \\
\]
Now the since fractional part in the above equation is \[\dfrac{8}{{15}}\]
Hence on comparing it with the value given we get:
\[
\dfrac{8}{{15}} = \dfrac{k}{{15}} \\
k = 8 \\
\]
Hence the value of k is 8.
Therefore (B) is the correct option.
Note:
The binomial expansion of two numbers is given by:
\[{\left( {a + b} \right)^n} = {}^nC0{\left( a \right)^0}{\left( b \right)^n} + {}^nC1{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^nC2{\left( a \right)^2}{\left( b \right)^{n - 2}} + ............... + {}^nC100{\left( a \right)^{100}}{\left( b \right)^0}\]
The binomial theorem describes the algebraic expansion of powers of a binomial.
Complete step by step solution:
The given number is \[\dfrac{{{2^{403}}}}{{15}}\]
And we are given that :
\[\dfrac{{{2^{403}}}}{{15}} = \dfrac{k}{{15}}..........\left( 1 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Therefore, the numerator \[{2^{403}}\] can be further written as:
\[{2^{403}} = {2^3} \times {2^{400}}............\left( 2 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Now according to another property of exponents :
\[{\left( {{a^b}} \right)^c} = {\left( a \right)^{bc}}\]
Applying this property in equation1 we get:
\[{2^{403}} = {2^3} \times {\left( {{2^4}} \right)^{100}}\]
Further solving it we get:
\[
{2^{403}} = {2^3} \times {\left( {16} \right)^{100}} \\
{2^{403}} = 8 \times {\left( {1 + 15} \right)^{100}} \\
\]
Now using binomial expansion we get:
\[
{2^{403}} = 8 \times \left[ {{}^{100}C0{{\left( {15} \right)}^0}{{\left( 1 \right)}^{100}} + {}^{100}C1{{\left( {15} \right)}^1}{{\left( 1 \right)}^{99}} + {}^{100}C2{{\left( {15} \right)}^2}{{\left( 1 \right)}^{98}} + ............... + {}^{100}C100{{\left( {15} \right)}^{100}}{{\left( 1 \right)}^0}} \right] \\
{2^{403}} = 8 \times \left[ {1 + {}^{100}C1\left( {15} \right) + {}^{100}C2{{\left( {15} \right)}^2} + ................ + {}^{100}C100{{\left( {15} \right)}^{100}}} \right] \\
{2^{403}} = 8 + 8 \times \left( {15} \right) + 8 \times {}^{100}C2{\left( {15} \right)^2} + ................ + 8 \times {}^{100}C100{\left( {15} \right)^{100}} \\
{2^{403}} = 8 + 8 \times \left( {15} \right)\left[ \lambda \right] \\
\]
Where \[\lambda = {}^{100}C2\left( {15} \right) + ................ + {}^{100}C100{\left( {15} \right)^{99}}\]
Now dividing the above equation by 15 we get:
\[
\dfrac{{{2^{403}}}}{{15}} = \dfrac{{8 + 8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + \dfrac{{8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + 8\lambda \\
\]
Now the since fractional part in the above equation is \[\dfrac{8}{{15}}\]
Hence on comparing it with the value given we get:
\[
\dfrac{8}{{15}} = \dfrac{k}{{15}} \\
k = 8 \\
\]
Hence the value of k is 8.
Therefore (B) is the correct option.
Note:
The binomial expansion of two numbers is given by:
\[{\left( {a + b} \right)^n} = {}^nC0{\left( a \right)^0}{\left( b \right)^n} + {}^nC1{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^nC2{\left( a \right)^2}{\left( b \right)^{n - 2}} + ............... + {}^nC100{\left( a \right)^{100}}{\left( b \right)^0}\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
