
If the fractional part of the number \[\dfrac{{{2^{403}}}}{{15}}\] is \[\dfrac{k}{{15}}\] , then k is equal to
Answer
583.5k+ views
Hint: We will use binomial expansion for the given number to find the fractional part of the number and then we will compare it with the given value to get the value of k.
The binomial theorem describes the algebraic expansion of powers of a binomial.
Complete step by step solution:
The given number is \[\dfrac{{{2^{403}}}}{{15}}\]
And we are given that :
\[\dfrac{{{2^{403}}}}{{15}} = \dfrac{k}{{15}}..........\left( 1 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Therefore, the numerator \[{2^{403}}\] can be further written as:
\[{2^{403}} = {2^3} \times {2^{400}}............\left( 2 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Now according to another property of exponents :
\[{\left( {{a^b}} \right)^c} = {\left( a \right)^{bc}}\]
Applying this property in equation1 we get:
\[{2^{403}} = {2^3} \times {\left( {{2^4}} \right)^{100}}\]
Further solving it we get:
\[
{2^{403}} = {2^3} \times {\left( {16} \right)^{100}} \\
{2^{403}} = 8 \times {\left( {1 + 15} \right)^{100}} \\
\]
Now using binomial expansion we get:
\[
{2^{403}} = 8 \times \left[ {{}^{100}C0{{\left( {15} \right)}^0}{{\left( 1 \right)}^{100}} + {}^{100}C1{{\left( {15} \right)}^1}{{\left( 1 \right)}^{99}} + {}^{100}C2{{\left( {15} \right)}^2}{{\left( 1 \right)}^{98}} + ............... + {}^{100}C100{{\left( {15} \right)}^{100}}{{\left( 1 \right)}^0}} \right] \\
{2^{403}} = 8 \times \left[ {1 + {}^{100}C1\left( {15} \right) + {}^{100}C2{{\left( {15} \right)}^2} + ................ + {}^{100}C100{{\left( {15} \right)}^{100}}} \right] \\
{2^{403}} = 8 + 8 \times \left( {15} \right) + 8 \times {}^{100}C2{\left( {15} \right)^2} + ................ + 8 \times {}^{100}C100{\left( {15} \right)^{100}} \\
{2^{403}} = 8 + 8 \times \left( {15} \right)\left[ \lambda \right] \\
\]
Where \[\lambda = {}^{100}C2\left( {15} \right) + ................ + {}^{100}C100{\left( {15} \right)^{99}}\]
Now dividing the above equation by 15 we get:
\[
\dfrac{{{2^{403}}}}{{15}} = \dfrac{{8 + 8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + \dfrac{{8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + 8\lambda \\
\]
Now the since fractional part in the above equation is \[\dfrac{8}{{15}}\]
Hence on comparing it with the value given we get:
\[
\dfrac{8}{{15}} = \dfrac{k}{{15}} \\
k = 8 \\
\]
Hence the value of k is 8.
Therefore (B) is the correct option.
Note:
The binomial expansion of two numbers is given by:
\[{\left( {a + b} \right)^n} = {}^nC0{\left( a \right)^0}{\left( b \right)^n} + {}^nC1{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^nC2{\left( a \right)^2}{\left( b \right)^{n - 2}} + ............... + {}^nC100{\left( a \right)^{100}}{\left( b \right)^0}\]
The binomial theorem describes the algebraic expansion of powers of a binomial.
Complete step by step solution:
The given number is \[\dfrac{{{2^{403}}}}{{15}}\]
And we are given that :
\[\dfrac{{{2^{403}}}}{{15}} = \dfrac{k}{{15}}..........\left( 1 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Therefore, the numerator \[{2^{403}}\] can be further written as:
\[{2^{403}} = {2^3} \times {2^{400}}............\left( 2 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Now according to another property of exponents :
\[{\left( {{a^b}} \right)^c} = {\left( a \right)^{bc}}\]
Applying this property in equation1 we get:
\[{2^{403}} = {2^3} \times {\left( {{2^4}} \right)^{100}}\]
Further solving it we get:
\[
{2^{403}} = {2^3} \times {\left( {16} \right)^{100}} \\
{2^{403}} = 8 \times {\left( {1 + 15} \right)^{100}} \\
\]
Now using binomial expansion we get:
\[
{2^{403}} = 8 \times \left[ {{}^{100}C0{{\left( {15} \right)}^0}{{\left( 1 \right)}^{100}} + {}^{100}C1{{\left( {15} \right)}^1}{{\left( 1 \right)}^{99}} + {}^{100}C2{{\left( {15} \right)}^2}{{\left( 1 \right)}^{98}} + ............... + {}^{100}C100{{\left( {15} \right)}^{100}}{{\left( 1 \right)}^0}} \right] \\
{2^{403}} = 8 \times \left[ {1 + {}^{100}C1\left( {15} \right) + {}^{100}C2{{\left( {15} \right)}^2} + ................ + {}^{100}C100{{\left( {15} \right)}^{100}}} \right] \\
{2^{403}} = 8 + 8 \times \left( {15} \right) + 8 \times {}^{100}C2{\left( {15} \right)^2} + ................ + 8 \times {}^{100}C100{\left( {15} \right)^{100}} \\
{2^{403}} = 8 + 8 \times \left( {15} \right)\left[ \lambda \right] \\
\]
Where \[\lambda = {}^{100}C2\left( {15} \right) + ................ + {}^{100}C100{\left( {15} \right)^{99}}\]
Now dividing the above equation by 15 we get:
\[
\dfrac{{{2^{403}}}}{{15}} = \dfrac{{8 + 8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + \dfrac{{8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + 8\lambda \\
\]
Now the since fractional part in the above equation is \[\dfrac{8}{{15}}\]
Hence on comparing it with the value given we get:
\[
\dfrac{8}{{15}} = \dfrac{k}{{15}} \\
k = 8 \\
\]
Hence the value of k is 8.
Therefore (B) is the correct option.
Note:
The binomial expansion of two numbers is given by:
\[{\left( {a + b} \right)^n} = {}^nC0{\left( a \right)^0}{\left( b \right)^n} + {}^nC1{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^nC2{\left( a \right)^2}{\left( b \right)^{n - 2}} + ............... + {}^nC100{\left( a \right)^{100}}{\left( b \right)^0}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

