
If the fractional part of the number \[\dfrac{{{2^{403}}}}{{15}}\] is \[\dfrac{k}{{15}}\] , then k is equal to
Answer
526.5k+ views
Hint: We will use binomial expansion for the given number to find the fractional part of the number and then we will compare it with the given value to get the value of k.
The binomial theorem describes the algebraic expansion of powers of a binomial.
Complete step by step solution:
The given number is \[\dfrac{{{2^{403}}}}{{15}}\]
And we are given that :
\[\dfrac{{{2^{403}}}}{{15}} = \dfrac{k}{{15}}..........\left( 1 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Therefore, the numerator \[{2^{403}}\] can be further written as:
\[{2^{403}} = {2^3} \times {2^{400}}............\left( 2 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Now according to another property of exponents :
\[{\left( {{a^b}} \right)^c} = {\left( a \right)^{bc}}\]
Applying this property in equation1 we get:
\[{2^{403}} = {2^3} \times {\left( {{2^4}} \right)^{100}}\]
Further solving it we get:
\[
{2^{403}} = {2^3} \times {\left( {16} \right)^{100}} \\
{2^{403}} = 8 \times {\left( {1 + 15} \right)^{100}} \\
\]
Now using binomial expansion we get:
\[
{2^{403}} = 8 \times \left[ {{}^{100}C0{{\left( {15} \right)}^0}{{\left( 1 \right)}^{100}} + {}^{100}C1{{\left( {15} \right)}^1}{{\left( 1 \right)}^{99}} + {}^{100}C2{{\left( {15} \right)}^2}{{\left( 1 \right)}^{98}} + ............... + {}^{100}C100{{\left( {15} \right)}^{100}}{{\left( 1 \right)}^0}} \right] \\
{2^{403}} = 8 \times \left[ {1 + {}^{100}C1\left( {15} \right) + {}^{100}C2{{\left( {15} \right)}^2} + ................ + {}^{100}C100{{\left( {15} \right)}^{100}}} \right] \\
{2^{403}} = 8 + 8 \times \left( {15} \right) + 8 \times {}^{100}C2{\left( {15} \right)^2} + ................ + 8 \times {}^{100}C100{\left( {15} \right)^{100}} \\
{2^{403}} = 8 + 8 \times \left( {15} \right)\left[ \lambda \right] \\
\]
Where \[\lambda = {}^{100}C2\left( {15} \right) + ................ + {}^{100}C100{\left( {15} \right)^{99}}\]
Now dividing the above equation by 15 we get:
\[
\dfrac{{{2^{403}}}}{{15}} = \dfrac{{8 + 8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + \dfrac{{8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + 8\lambda \\
\]
Now the since fractional part in the above equation is \[\dfrac{8}{{15}}\]
Hence on comparing it with the value given we get:
\[
\dfrac{8}{{15}} = \dfrac{k}{{15}} \\
k = 8 \\
\]
Hence the value of k is 8.
Therefore (B) is the correct option.
Note:
The binomial expansion of two numbers is given by:
\[{\left( {a + b} \right)^n} = {}^nC0{\left( a \right)^0}{\left( b \right)^n} + {}^nC1{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^nC2{\left( a \right)^2}{\left( b \right)^{n - 2}} + ............... + {}^nC100{\left( a \right)^{100}}{\left( b \right)^0}\]
The binomial theorem describes the algebraic expansion of powers of a binomial.
Complete step by step solution:
The given number is \[\dfrac{{{2^{403}}}}{{15}}\]
And we are given that :
\[\dfrac{{{2^{403}}}}{{15}} = \dfrac{k}{{15}}..........\left( 1 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Therefore, the numerator \[{2^{403}}\] can be further written as:
\[{2^{403}} = {2^3} \times {2^{400}}............\left( 2 \right)\]
According to the property of exponents if numbers with same and different powers are multiplied then their powers get added:
\[{a^b} \times {a^c} = {a^{\left( {b + c} \right)}}\]
Now according to another property of exponents :
\[{\left( {{a^b}} \right)^c} = {\left( a \right)^{bc}}\]
Applying this property in equation1 we get:
\[{2^{403}} = {2^3} \times {\left( {{2^4}} \right)^{100}}\]
Further solving it we get:
\[
{2^{403}} = {2^3} \times {\left( {16} \right)^{100}} \\
{2^{403}} = 8 \times {\left( {1 + 15} \right)^{100}} \\
\]
Now using binomial expansion we get:
\[
{2^{403}} = 8 \times \left[ {{}^{100}C0{{\left( {15} \right)}^0}{{\left( 1 \right)}^{100}} + {}^{100}C1{{\left( {15} \right)}^1}{{\left( 1 \right)}^{99}} + {}^{100}C2{{\left( {15} \right)}^2}{{\left( 1 \right)}^{98}} + ............... + {}^{100}C100{{\left( {15} \right)}^{100}}{{\left( 1 \right)}^0}} \right] \\
{2^{403}} = 8 \times \left[ {1 + {}^{100}C1\left( {15} \right) + {}^{100}C2{{\left( {15} \right)}^2} + ................ + {}^{100}C100{{\left( {15} \right)}^{100}}} \right] \\
{2^{403}} = 8 + 8 \times \left( {15} \right) + 8 \times {}^{100}C2{\left( {15} \right)^2} + ................ + 8 \times {}^{100}C100{\left( {15} \right)^{100}} \\
{2^{403}} = 8 + 8 \times \left( {15} \right)\left[ \lambda \right] \\
\]
Where \[\lambda = {}^{100}C2\left( {15} \right) + ................ + {}^{100}C100{\left( {15} \right)^{99}}\]
Now dividing the above equation by 15 we get:
\[
\dfrac{{{2^{403}}}}{{15}} = \dfrac{{8 + 8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + \dfrac{{8 \times \left( {15} \right)\left[ \lambda \right]}}{{15}} \\
\dfrac{{{2^{403}}}}{{15}} = \dfrac{8}{{15}} + 8\lambda \\
\]
Now the since fractional part in the above equation is \[\dfrac{8}{{15}}\]
Hence on comparing it with the value given we get:
\[
\dfrac{8}{{15}} = \dfrac{k}{{15}} \\
k = 8 \\
\]
Hence the value of k is 8.
Therefore (B) is the correct option.
Note:
The binomial expansion of two numbers is given by:
\[{\left( {a + b} \right)^n} = {}^nC0{\left( a \right)^0}{\left( b \right)^n} + {}^nC1{\left( a \right)^1}{\left( b \right)^{n - 1}} + {}^nC2{\left( a \right)^2}{\left( b \right)^{n - 2}} + ............... + {}^nC100{\left( a \right)^{100}}{\left( b \right)^0}\]
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The first general election of Lok Sabha was held in class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
