
If the fourth term in the binomial expansion of \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\left( x>0 \right)\] is \[20\times {{8}^{7}},\] then the value of x is?
\[\left( a \right)8\]
\[\left( b \right){{8}^{-1}}\]
\[\left( c \right){{8}^{-2}}\]
\[\left( d \right){{8}^{3}}\]
Answer
576.9k+ views
Hint: The general \[{{\left( r+1 \right)}^{th}}\] term in any binomial is given as \[{{T}_{r+1}}={{\text{ }}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}.\] So we will use this at first and then we use log properties like \[\log {{a}^{n}}=n\log a,\] if \[{{\log }_{a}}b=c\] then we have \[b={{a}^{c}}.\] Further, we will substitute \[t={{\log }_{2}}x\] to simplify our equation. We will get a quadratic equation and will simplify it using the middle term split method. Then out of all the answers, we will choose an option available to us.
Complete step-by-step answer:
We are given that the fourth term of the binomial expansion \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\] is \[20\times {{8}^{7}}.\] We are asked to find x. We know that for any binomial expansion is \[{{\left( a+b \right)}^{n}}.\]
The \[{{\left( r+1 \right)}^{th}}\] term \[{{T}_{r+1}}\] is given as \[{{T}_{r+1}}={{\text{ }}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}.\]
So, for \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\] we have \[a=\dfrac{2}{x},b={{x}^{{{\log }_{8}}x}},n=6.\] So, the fourth term will be given as, \[{{T}_{4}}={{T}_{3+1}}.\] So,
\[{{T}_{3+1}}={{\text{ }}^{6}}{{C}_{3}}{{\left( \dfrac{2}{x} \right)}^{3}}{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}\]
Also, we have,
\[{{T}_{4}}=20\times {{8}^{7}}\]
So, comparing both, we get,
\[{{\text{ }}^{6}}{{C}_{3}}{{\left( \dfrac{2}{x} \right)}^{3}}{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}=20\times {{8}^{7}}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{160}{{{x}^{3}}}\times {{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}=20\times {{8}^{7}}\]
Now, \[{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}={{x}^{3{{\log }_{8}}x}}.\] So, we get,
\[\Rightarrow \dfrac{160}{{{x}^{3}}}{{x}^{3{{\log }_{8}}x}}=20\times {{8}^{7}}\]
Cancelling the like terms, we get,
\[\Rightarrow \dfrac{{{x}^{3{{\log }_{8}}x}}}{{{x}^{3}}}={{8}^{6}}\]
As, \[\dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}},\] we get,
\[\Rightarrow {{x}^{3{{\log }_{8}}x-3}}={{8}^{6}}\]
Now, we know that, \[8={{2}^{3}}.\] So, we get,
\[\Rightarrow {{8}^{6}}={{\left( {{2}^{3}} \right)}^{6}}={{2}^{18}}\]
\[\Rightarrow {{x}^{3{{\log }_{{{2}^{3}}}}x-3}}={{2}^{18}}\]
Simplifying, we get,
\[\Rightarrow {{x}^{{{\log }_{2}}x-3}}={{2}^{18}}\]
Appling \[{{\log }_{2}}\] on both the sides, we get,
\[\Rightarrow {{\log }_{2}}\left( {{x}^{{{\log }_{2}}x-3}} \right)={{\log }_{2}}{{2}^{18}}\]
We know that, \[\log {{a}^{n}}=n\log a,\] so, we get,
\[\Rightarrow \left( {{\log }_{2}}x-3 \right){{\log }_{2}}x=18{{\log }_{2}}2\]
We know that, \[{{\log }_{a}}\left( a \right)=1.\] So, \[{{\log }_{2}}\left( 2 \right)=1.\]
\[\Rightarrow \left( {{\log }_{2}}x-3 \right){{\log }_{2}}x=18\]
Taking \[{{\log }_{2}}x=t\] to simplify, we get,
\[\Rightarrow \left( t-3 \right)t=18\]
\[\Rightarrow {{t}^{2}}-3t-18=0\]
Solving, we get,
\[\Rightarrow \left( t-6 \right)\left( t+3 \right)=0\]
So, we get, t = 6 and t = – 3.
(i) If t = 6
This means, \[{{\log }_{2}}x=6\]
We know that \[{{\log }_{a}}b=c.\] From this, we get,
\[\Rightarrow b={{a}^{c}}\]
So, \[{{\log }_{2}}x=6.\]
\[\Rightarrow x={{2}^{6}}\]
\[\Rightarrow x={{\left( {{2}^{3}} \right)}^{6}}\]
\[\Rightarrow x={{8}^{2}}\]
(ii) If t = – 3
This means, \[{{\log }_{2}}x=-3\]
We know that \[{{\log }_{a}}b=c.\] From this, we get,
\[\Rightarrow b={{a}^{c}}\]
So, \[{{\log }_{2}}x=-3.\]
\[\Rightarrow x={{2}^{-3}}\]
\[\Rightarrow x={{8}^{-1}}\]
So, option (b) is matching.
So, the correct answer is “Option b”.
Note: Remember that we simplified our quadratic equation using the middle term split method.
\[\Rightarrow {{t}^{2}}-3t-18=0\]
\[\Rightarrow {{t}^{2}}-6t+3t-18=0\]
Taking the common, we get,
\[\Rightarrow t\left( t-6 \right)+3\left( t-6 \right)=0\]
\[\Rightarrow \left( t+3 \right)\left( t-6 \right)=0\]
So,
\[\Rightarrow t+3=0;t-6=0\]
\[\Rightarrow t=-3;t=6\]
Also, as, \[{{\log }_{a}}b=c,\] we get, \[b={{a}^{c}}.\]
Then applying it at \[{{\log }_{2}}x=6,\] we have, a = 2, b = x and c = 6. So, \[b={{a}^{c}}\] means \[x={{2}^{6}}={{\left( {{2}^{3}} \right)}^{2}}={{8}^{2}}.\]
Complete step-by-step answer:
We are given that the fourth term of the binomial expansion \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\] is \[20\times {{8}^{7}}.\] We are asked to find x. We know that for any binomial expansion is \[{{\left( a+b \right)}^{n}}.\]
The \[{{\left( r+1 \right)}^{th}}\] term \[{{T}_{r+1}}\] is given as \[{{T}_{r+1}}={{\text{ }}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}.\]
So, for \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\] we have \[a=\dfrac{2}{x},b={{x}^{{{\log }_{8}}x}},n=6.\] So, the fourth term will be given as, \[{{T}_{4}}={{T}_{3+1}}.\] So,
\[{{T}_{3+1}}={{\text{ }}^{6}}{{C}_{3}}{{\left( \dfrac{2}{x} \right)}^{3}}{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}\]
Also, we have,
\[{{T}_{4}}=20\times {{8}^{7}}\]
So, comparing both, we get,
\[{{\text{ }}^{6}}{{C}_{3}}{{\left( \dfrac{2}{x} \right)}^{3}}{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}=20\times {{8}^{7}}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{160}{{{x}^{3}}}\times {{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}=20\times {{8}^{7}}\]
Now, \[{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}={{x}^{3{{\log }_{8}}x}}.\] So, we get,
\[\Rightarrow \dfrac{160}{{{x}^{3}}}{{x}^{3{{\log }_{8}}x}}=20\times {{8}^{7}}\]
Cancelling the like terms, we get,
\[\Rightarrow \dfrac{{{x}^{3{{\log }_{8}}x}}}{{{x}^{3}}}={{8}^{6}}\]
As, \[\dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}},\] we get,
\[\Rightarrow {{x}^{3{{\log }_{8}}x-3}}={{8}^{6}}\]
Now, we know that, \[8={{2}^{3}}.\] So, we get,
\[\Rightarrow {{8}^{6}}={{\left( {{2}^{3}} \right)}^{6}}={{2}^{18}}\]
\[\Rightarrow {{x}^{3{{\log }_{{{2}^{3}}}}x-3}}={{2}^{18}}\]
Simplifying, we get,
\[\Rightarrow {{x}^{{{\log }_{2}}x-3}}={{2}^{18}}\]
Appling \[{{\log }_{2}}\] on both the sides, we get,
\[\Rightarrow {{\log }_{2}}\left( {{x}^{{{\log }_{2}}x-3}} \right)={{\log }_{2}}{{2}^{18}}\]
We know that, \[\log {{a}^{n}}=n\log a,\] so, we get,
\[\Rightarrow \left( {{\log }_{2}}x-3 \right){{\log }_{2}}x=18{{\log }_{2}}2\]
We know that, \[{{\log }_{a}}\left( a \right)=1.\] So, \[{{\log }_{2}}\left( 2 \right)=1.\]
\[\Rightarrow \left( {{\log }_{2}}x-3 \right){{\log }_{2}}x=18\]
Taking \[{{\log }_{2}}x=t\] to simplify, we get,
\[\Rightarrow \left( t-3 \right)t=18\]
\[\Rightarrow {{t}^{2}}-3t-18=0\]
Solving, we get,
\[\Rightarrow \left( t-6 \right)\left( t+3 \right)=0\]
So, we get, t = 6 and t = – 3.
(i) If t = 6
This means, \[{{\log }_{2}}x=6\]
We know that \[{{\log }_{a}}b=c.\] From this, we get,
\[\Rightarrow b={{a}^{c}}\]
So, \[{{\log }_{2}}x=6.\]
\[\Rightarrow x={{2}^{6}}\]
\[\Rightarrow x={{\left( {{2}^{3}} \right)}^{6}}\]
\[\Rightarrow x={{8}^{2}}\]
(ii) If t = – 3
This means, \[{{\log }_{2}}x=-3\]
We know that \[{{\log }_{a}}b=c.\] From this, we get,
\[\Rightarrow b={{a}^{c}}\]
So, \[{{\log }_{2}}x=-3.\]
\[\Rightarrow x={{2}^{-3}}\]
\[\Rightarrow x={{8}^{-1}}\]
So, option (b) is matching.
So, the correct answer is “Option b”.
Note: Remember that we simplified our quadratic equation using the middle term split method.
\[\Rightarrow {{t}^{2}}-3t-18=0\]
\[\Rightarrow {{t}^{2}}-6t+3t-18=0\]
Taking the common, we get,
\[\Rightarrow t\left( t-6 \right)+3\left( t-6 \right)=0\]
\[\Rightarrow \left( t+3 \right)\left( t-6 \right)=0\]
So,
\[\Rightarrow t+3=0;t-6=0\]
\[\Rightarrow t=-3;t=6\]
Also, as, \[{{\log }_{a}}b=c,\] we get, \[b={{a}^{c}}.\]
Then applying it at \[{{\log }_{2}}x=6,\] we have, a = 2, b = x and c = 6. So, \[b={{a}^{c}}\] means \[x={{2}^{6}}={{\left( {{2}^{3}} \right)}^{2}}={{8}^{2}}.\]
Recently Updated Pages
Master Class 12 Chemistry: Engaging Questions & Answers for Success

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

