
If the fourth term in the binomial expansion of \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\left( x>0 \right)\] is \[20\times {{8}^{7}},\] then the value of x is?
\[\left( a \right)8\]
\[\left( b \right){{8}^{-1}}\]
\[\left( c \right){{8}^{-2}}\]
\[\left( d \right){{8}^{3}}\]
Answer
510.3k+ views
Hint: The general \[{{\left( r+1 \right)}^{th}}\] term in any binomial is given as \[{{T}_{r+1}}={{\text{ }}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}.\] So we will use this at first and then we use log properties like \[\log {{a}^{n}}=n\log a,\] if \[{{\log }_{a}}b=c\] then we have \[b={{a}^{c}}.\] Further, we will substitute \[t={{\log }_{2}}x\] to simplify our equation. We will get a quadratic equation and will simplify it using the middle term split method. Then out of all the answers, we will choose an option available to us.
Complete step-by-step answer:
We are given that the fourth term of the binomial expansion \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\] is \[20\times {{8}^{7}}.\] We are asked to find x. We know that for any binomial expansion is \[{{\left( a+b \right)}^{n}}.\]
The \[{{\left( r+1 \right)}^{th}}\] term \[{{T}_{r+1}}\] is given as \[{{T}_{r+1}}={{\text{ }}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}.\]
So, for \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\] we have \[a=\dfrac{2}{x},b={{x}^{{{\log }_{8}}x}},n=6.\] So, the fourth term will be given as, \[{{T}_{4}}={{T}_{3+1}}.\] So,
\[{{T}_{3+1}}={{\text{ }}^{6}}{{C}_{3}}{{\left( \dfrac{2}{x} \right)}^{3}}{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}\]
Also, we have,
\[{{T}_{4}}=20\times {{8}^{7}}\]
So, comparing both, we get,
\[{{\text{ }}^{6}}{{C}_{3}}{{\left( \dfrac{2}{x} \right)}^{3}}{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}=20\times {{8}^{7}}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{160}{{{x}^{3}}}\times {{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}=20\times {{8}^{7}}\]
Now, \[{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}={{x}^{3{{\log }_{8}}x}}.\] So, we get,
\[\Rightarrow \dfrac{160}{{{x}^{3}}}{{x}^{3{{\log }_{8}}x}}=20\times {{8}^{7}}\]
Cancelling the like terms, we get,
\[\Rightarrow \dfrac{{{x}^{3{{\log }_{8}}x}}}{{{x}^{3}}}={{8}^{6}}\]
As, \[\dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}},\] we get,
\[\Rightarrow {{x}^{3{{\log }_{8}}x-3}}={{8}^{6}}\]
Now, we know that, \[8={{2}^{3}}.\] So, we get,
\[\Rightarrow {{8}^{6}}={{\left( {{2}^{3}} \right)}^{6}}={{2}^{18}}\]
\[\Rightarrow {{x}^{3{{\log }_{{{2}^{3}}}}x-3}}={{2}^{18}}\]
Simplifying, we get,
\[\Rightarrow {{x}^{{{\log }_{2}}x-3}}={{2}^{18}}\]
Appling \[{{\log }_{2}}\] on both the sides, we get,
\[\Rightarrow {{\log }_{2}}\left( {{x}^{{{\log }_{2}}x-3}} \right)={{\log }_{2}}{{2}^{18}}\]
We know that, \[\log {{a}^{n}}=n\log a,\] so, we get,
\[\Rightarrow \left( {{\log }_{2}}x-3 \right){{\log }_{2}}x=18{{\log }_{2}}2\]
We know that, \[{{\log }_{a}}\left( a \right)=1.\] So, \[{{\log }_{2}}\left( 2 \right)=1.\]
\[\Rightarrow \left( {{\log }_{2}}x-3 \right){{\log }_{2}}x=18\]
Taking \[{{\log }_{2}}x=t\] to simplify, we get,
\[\Rightarrow \left( t-3 \right)t=18\]
\[\Rightarrow {{t}^{2}}-3t-18=0\]
Solving, we get,
\[\Rightarrow \left( t-6 \right)\left( t+3 \right)=0\]
So, we get, t = 6 and t = – 3.
(i) If t = 6
This means, \[{{\log }_{2}}x=6\]
We know that \[{{\log }_{a}}b=c.\] From this, we get,
\[\Rightarrow b={{a}^{c}}\]
So, \[{{\log }_{2}}x=6.\]
\[\Rightarrow x={{2}^{6}}\]
\[\Rightarrow x={{\left( {{2}^{3}} \right)}^{6}}\]
\[\Rightarrow x={{8}^{2}}\]
(ii) If t = – 3
This means, \[{{\log }_{2}}x=-3\]
We know that \[{{\log }_{a}}b=c.\] From this, we get,
\[\Rightarrow b={{a}^{c}}\]
So, \[{{\log }_{2}}x=-3.\]
\[\Rightarrow x={{2}^{-3}}\]
\[\Rightarrow x={{8}^{-1}}\]
So, option (b) is matching.
So, the correct answer is “Option b”.
Note: Remember that we simplified our quadratic equation using the middle term split method.
\[\Rightarrow {{t}^{2}}-3t-18=0\]
\[\Rightarrow {{t}^{2}}-6t+3t-18=0\]
Taking the common, we get,
\[\Rightarrow t\left( t-6 \right)+3\left( t-6 \right)=0\]
\[\Rightarrow \left( t+3 \right)\left( t-6 \right)=0\]
So,
\[\Rightarrow t+3=0;t-6=0\]
\[\Rightarrow t=-3;t=6\]
Also, as, \[{{\log }_{a}}b=c,\] we get, \[b={{a}^{c}}.\]
Then applying it at \[{{\log }_{2}}x=6,\] we have, a = 2, b = x and c = 6. So, \[b={{a}^{c}}\] means \[x={{2}^{6}}={{\left( {{2}^{3}} \right)}^{2}}={{8}^{2}}.\]
Complete step-by-step answer:
We are given that the fourth term of the binomial expansion \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\] is \[20\times {{8}^{7}}.\] We are asked to find x. We know that for any binomial expansion is \[{{\left( a+b \right)}^{n}}.\]
The \[{{\left( r+1 \right)}^{th}}\] term \[{{T}_{r+1}}\] is given as \[{{T}_{r+1}}={{\text{ }}^{n}}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}.\]
So, for \[{{\left( \dfrac{2}{x}+{{x}^{{{\log }_{8}}x}} \right)}^{6}}\] we have \[a=\dfrac{2}{x},b={{x}^{{{\log }_{8}}x}},n=6.\] So, the fourth term will be given as, \[{{T}_{4}}={{T}_{3+1}}.\] So,
\[{{T}_{3+1}}={{\text{ }}^{6}}{{C}_{3}}{{\left( \dfrac{2}{x} \right)}^{3}}{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}\]
Also, we have,
\[{{T}_{4}}=20\times {{8}^{7}}\]
So, comparing both, we get,
\[{{\text{ }}^{6}}{{C}_{3}}{{\left( \dfrac{2}{x} \right)}^{3}}{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}=20\times {{8}^{7}}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{160}{{{x}^{3}}}\times {{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}=20\times {{8}^{7}}\]
Now, \[{{\left( {{x}^{{{\log }_{8}}x}} \right)}^{3}}={{x}^{3{{\log }_{8}}x}}.\] So, we get,
\[\Rightarrow \dfrac{160}{{{x}^{3}}}{{x}^{3{{\log }_{8}}x}}=20\times {{8}^{7}}\]
Cancelling the like terms, we get,
\[\Rightarrow \dfrac{{{x}^{3{{\log }_{8}}x}}}{{{x}^{3}}}={{8}^{6}}\]
As, \[\dfrac{{{x}^{a}}}{{{x}^{b}}}={{x}^{a-b}},\] we get,
\[\Rightarrow {{x}^{3{{\log }_{8}}x-3}}={{8}^{6}}\]
Now, we know that, \[8={{2}^{3}}.\] So, we get,
\[\Rightarrow {{8}^{6}}={{\left( {{2}^{3}} \right)}^{6}}={{2}^{18}}\]
\[\Rightarrow {{x}^{3{{\log }_{{{2}^{3}}}}x-3}}={{2}^{18}}\]
Simplifying, we get,
\[\Rightarrow {{x}^{{{\log }_{2}}x-3}}={{2}^{18}}\]
Appling \[{{\log }_{2}}\] on both the sides, we get,
\[\Rightarrow {{\log }_{2}}\left( {{x}^{{{\log }_{2}}x-3}} \right)={{\log }_{2}}{{2}^{18}}\]
We know that, \[\log {{a}^{n}}=n\log a,\] so, we get,
\[\Rightarrow \left( {{\log }_{2}}x-3 \right){{\log }_{2}}x=18{{\log }_{2}}2\]
We know that, \[{{\log }_{a}}\left( a \right)=1.\] So, \[{{\log }_{2}}\left( 2 \right)=1.\]
\[\Rightarrow \left( {{\log }_{2}}x-3 \right){{\log }_{2}}x=18\]
Taking \[{{\log }_{2}}x=t\] to simplify, we get,
\[\Rightarrow \left( t-3 \right)t=18\]
\[\Rightarrow {{t}^{2}}-3t-18=0\]
Solving, we get,
\[\Rightarrow \left( t-6 \right)\left( t+3 \right)=0\]
So, we get, t = 6 and t = – 3.
(i) If t = 6
This means, \[{{\log }_{2}}x=6\]
We know that \[{{\log }_{a}}b=c.\] From this, we get,
\[\Rightarrow b={{a}^{c}}\]
So, \[{{\log }_{2}}x=6.\]
\[\Rightarrow x={{2}^{6}}\]
\[\Rightarrow x={{\left( {{2}^{3}} \right)}^{6}}\]
\[\Rightarrow x={{8}^{2}}\]
(ii) If t = – 3
This means, \[{{\log }_{2}}x=-3\]
We know that \[{{\log }_{a}}b=c.\] From this, we get,
\[\Rightarrow b={{a}^{c}}\]
So, \[{{\log }_{2}}x=-3.\]
\[\Rightarrow x={{2}^{-3}}\]
\[\Rightarrow x={{8}^{-1}}\]
So, option (b) is matching.
So, the correct answer is “Option b”.
Note: Remember that we simplified our quadratic equation using the middle term split method.
\[\Rightarrow {{t}^{2}}-3t-18=0\]
\[\Rightarrow {{t}^{2}}-6t+3t-18=0\]
Taking the common, we get,
\[\Rightarrow t\left( t-6 \right)+3\left( t-6 \right)=0\]
\[\Rightarrow \left( t+3 \right)\left( t-6 \right)=0\]
So,
\[\Rightarrow t+3=0;t-6=0\]
\[\Rightarrow t=-3;t=6\]
Also, as, \[{{\log }_{a}}b=c,\] we get, \[b={{a}^{c}}.\]
Then applying it at \[{{\log }_{2}}x=6,\] we have, a = 2, b = x and c = 6. So, \[b={{a}^{c}}\] means \[x={{2}^{6}}={{\left( {{2}^{3}} \right)}^{2}}={{8}^{2}}.\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
