
If the first point of trisection of AB is (t, 2t) and the ends A, B move on ‘x’ and ‘y’ axis respectfully, then the focus of midpoint of AB is
A.x = y
B.2x = y
C.4x = y
D.x = 4y
Answer
565.5k+ views
Hint: We know the section formula, the coordinates of the point P(x, y) which divides the line segment joining the points \[A({x_1},{y_1})\] and \[B({x_2},{y_2})\] internally, in the ratio \[{m_1}:{m_2}\] are \[\left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)\] . We choose the midpoint as \[M(h,k)\] and using the above formula we find the coordinate values ‘h’ and ‘k’ to obtain the required result.
Complete step-by-step answer:
Let \[M(h,k)\] be the midpoint of line AB. Given A, B move on the ‘x’ and ‘y’ axis respectively. Then it is obvious that the coordinates of A and B are \[A(2h,0)\] and \[B(0,2k)\] .
Since point \[P(t,2t)\] is first trisection it divides A and B into \[1:2\] ratio. See in the below diagram for understanding point of view.
We have \[A({x_1},{y_1}) = A(2h,0)\] , \[B({x_2},{y_2}) = B(0,2k)\] and which divides in the ratio \[1:2\] . Using the section formula we find the coordinates of the point P.
Using the formula \[\left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)\]
\[ \Rightarrow = P\left( {\dfrac{{\left( {1 \times 0} \right) + \left( {2 \times 2h} \right)}}{{1 + 2}},\dfrac{{\left( {1 \times 2k} \right) + \left( {2 \times 0} \right)}}{{1 + 2}}} \right)\]
\[ \Rightarrow = P\left( {\dfrac{{0 + 4h}}{3},\dfrac{{2k + 0}}{3}} \right)\]
\[ \Rightarrow = P\left( {\dfrac{{4h}}{3},\dfrac{{2k}}{3}} \right)\]
But we already have point p coordinates as \[P(t,2t)\] .
Comparing ‘x’ and ‘y’ coordinates in both Points P we have
The ‘x’ coordinate \[\dfrac{{4h}}{3} = t\]
Multiply by 3 on both sides.
\[ \Rightarrow 4h = 3t{\text{ - - - - - - - (1)}}\]
The ‘y’ coordinate \[\dfrac{{2k}}{3} = 2t\]
Cancelling 2 on both sides,
\[ \Rightarrow \dfrac{k}{3} = t\]
Multiply by 3 on both sides,
\[ \Rightarrow k = 3t{\text{ - - - - - - - (2)}}\]
Now substituting equation (2) in equation (1) we have \[ \Rightarrow 4h = k\] .
But we have options in ‘x’ and ‘y’ variables, so we have
\[ \Rightarrow 4x = y\] (Because \[(h,y) = (x,y)\] )
So, the correct answer is “Option C”.
Note: In general Trisection is the division of a quantity or figure into three equal parts. In the above problem when P is the first trisection there is another two trisection. Hence we take the ratio as \[1:2\] . Remember the formula of section formula. Careful in the substitution and calculation part.
Complete step-by-step answer:
Let \[M(h,k)\] be the midpoint of line AB. Given A, B move on the ‘x’ and ‘y’ axis respectively. Then it is obvious that the coordinates of A and B are \[A(2h,0)\] and \[B(0,2k)\] .
Since point \[P(t,2t)\] is first trisection it divides A and B into \[1:2\] ratio. See in the below diagram for understanding point of view.
We have \[A({x_1},{y_1}) = A(2h,0)\] , \[B({x_2},{y_2}) = B(0,2k)\] and which divides in the ratio \[1:2\] . Using the section formula we find the coordinates of the point P.
Using the formula \[\left( {\dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}},\dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)\]
\[ \Rightarrow = P\left( {\dfrac{{\left( {1 \times 0} \right) + \left( {2 \times 2h} \right)}}{{1 + 2}},\dfrac{{\left( {1 \times 2k} \right) + \left( {2 \times 0} \right)}}{{1 + 2}}} \right)\]
\[ \Rightarrow = P\left( {\dfrac{{0 + 4h}}{3},\dfrac{{2k + 0}}{3}} \right)\]
\[ \Rightarrow = P\left( {\dfrac{{4h}}{3},\dfrac{{2k}}{3}} \right)\]
But we already have point p coordinates as \[P(t,2t)\] .
Comparing ‘x’ and ‘y’ coordinates in both Points P we have
The ‘x’ coordinate \[\dfrac{{4h}}{3} = t\]
Multiply by 3 on both sides.
\[ \Rightarrow 4h = 3t{\text{ - - - - - - - (1)}}\]
The ‘y’ coordinate \[\dfrac{{2k}}{3} = 2t\]
Cancelling 2 on both sides,
\[ \Rightarrow \dfrac{k}{3} = t\]
Multiply by 3 on both sides,
\[ \Rightarrow k = 3t{\text{ - - - - - - - (2)}}\]
Now substituting equation (2) in equation (1) we have \[ \Rightarrow 4h = k\] .
But we have options in ‘x’ and ‘y’ variables, so we have
\[ \Rightarrow 4x = y\] (Because \[(h,y) = (x,y)\] )
So, the correct answer is “Option C”.
Note: In general Trisection is the division of a quantity or figure into three equal parts. In the above problem when P is the first trisection there is another two trisection. Hence we take the ratio as \[1:2\] . Remember the formula of section formula. Careful in the substitution and calculation part.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

