
If the equation$({a^2} + {b^2}){x^2} - 2(ac + bd)x + ({c^2} + {d^2}) = 0$ has equal roots, then which one of the following is correct?
ab = cd
ad = bc
${a^2} + {c^2} = {b^2} + {d^2}$
ac = bd
Answer
579.6k+ views
Hint: Start by comparing with the standard quadratic equation and find out the discriminant value, and according to the condition of equal roots equate D to zero i.e. D=0, Find out the required condition by simplifying the relation.
Complete step-by-step solution:
Given , $({a^2} + {b^2}){x^2} - 2(ac + bd)x + ({c^2} + {d^2}) = 0 \to (1)$
Step by step solution
We know for any quadratic equation $A{x^2} + Bx + C = 0$, equal roots are possible only when discriminant(D) = 0. Which can be found by the formula $D = {B^2} - 4AC$.
On comparing with equation 1, we get
$
A = ({a^2} + {b^2}) \\
B = - 2(ac + bd) \\
C = ({c^2} + {d^2}) $
Using the above concept we need to find discriminant (D), we get :
$ D = {\left[ { - 2(ac + bd)} \right]^2} - 4 \times ({a^2} + {b^2}) \times ({c^2} + {d^2}) \\
= 4({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) - 4({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) $
Here, we used the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$
Now , $D = 0$
$\Rightarrow 4({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) - 4({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) = 0 \\
\Rightarrow ({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) = ({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) \\
\Rightarrow {a^2}{d^2} + {b^2}{c^2} - 2ac \cdot bd = 0 \\
\Rightarrow {(ad - bc)^2} = 0 \\
\Rightarrow ad - bc = 0 \\
\Rightarrow ad = bc $
So, option B is the correct option.
Note: For any quadratic equation $A{x^2} + Bx + C = 0$, there are three types of roots available which can only be determined after calculating Discriminant(D) by the formula or relation $D = {B^2} - 4AC$ . Now the three types of roots are as follows:
i). D>0 , Distinct and real roots exist and the roots are $\alpha = \dfrac{{ - B + \sqrt D }}{{2A}},\beta = \dfrac{{ - B - \sqrt D }}{{2A}}$
ii). D=0, Real and equal roots exist and the roots are $\alpha = \beta = \dfrac{{ - B}}{{2A}}$
iii). D<0, Imaginary roots exist.
For imaginary roots, there's a whole different chapter and concept known as “Complex numbers and roots”.
Complete step-by-step solution:
Given , $({a^2} + {b^2}){x^2} - 2(ac + bd)x + ({c^2} + {d^2}) = 0 \to (1)$
Step by step solution
We know for any quadratic equation $A{x^2} + Bx + C = 0$, equal roots are possible only when discriminant(D) = 0. Which can be found by the formula $D = {B^2} - 4AC$.
On comparing with equation 1, we get
$
A = ({a^2} + {b^2}) \\
B = - 2(ac + bd) \\
C = ({c^2} + {d^2}) $
Using the above concept we need to find discriminant (D), we get :
$ D = {\left[ { - 2(ac + bd)} \right]^2} - 4 \times ({a^2} + {b^2}) \times ({c^2} + {d^2}) \\
= 4({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) - 4({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) $
Here, we used the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$
Now , $D = 0$
$\Rightarrow 4({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) - 4({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) = 0 \\
\Rightarrow ({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) = ({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) \\
\Rightarrow {a^2}{d^2} + {b^2}{c^2} - 2ac \cdot bd = 0 \\
\Rightarrow {(ad - bc)^2} = 0 \\
\Rightarrow ad - bc = 0 \\
\Rightarrow ad = bc $
So, option B is the correct option.
Note: For any quadratic equation $A{x^2} + Bx + C = 0$, there are three types of roots available which can only be determined after calculating Discriminant(D) by the formula or relation $D = {B^2} - 4AC$ . Now the three types of roots are as follows:
i). D>0 , Distinct and real roots exist and the roots are $\alpha = \dfrac{{ - B + \sqrt D }}{{2A}},\beta = \dfrac{{ - B - \sqrt D }}{{2A}}$
ii). D=0, Real and equal roots exist and the roots are $\alpha = \beta = \dfrac{{ - B}}{{2A}}$
iii). D<0, Imaginary roots exist.
For imaginary roots, there's a whole different chapter and concept known as “Complex numbers and roots”.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

