
If the equation$({a^2} + {b^2}){x^2} - 2(ac + bd)x + ({c^2} + {d^2}) = 0$ has equal roots, then which one of the following is correct?
ab = cd
ad = bc
${a^2} + {c^2} = {b^2} + {d^2}$
ac = bd
Answer
593.4k+ views
Hint: Start by comparing with the standard quadratic equation and find out the discriminant value, and according to the condition of equal roots equate D to zero i.e. D=0, Find out the required condition by simplifying the relation.
Complete step-by-step solution:
Given , $({a^2} + {b^2}){x^2} - 2(ac + bd)x + ({c^2} + {d^2}) = 0 \to (1)$
Step by step solution
We know for any quadratic equation $A{x^2} + Bx + C = 0$, equal roots are possible only when discriminant(D) = 0. Which can be found by the formula $D = {B^2} - 4AC$.
On comparing with equation 1, we get
$
A = ({a^2} + {b^2}) \\
B = - 2(ac + bd) \\
C = ({c^2} + {d^2}) $
Using the above concept we need to find discriminant (D), we get :
$ D = {\left[ { - 2(ac + bd)} \right]^2} - 4 \times ({a^2} + {b^2}) \times ({c^2} + {d^2}) \\
= 4({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) - 4({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) $
Here, we used the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$
Now , $D = 0$
$\Rightarrow 4({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) - 4({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) = 0 \\
\Rightarrow ({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) = ({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) \\
\Rightarrow {a^2}{d^2} + {b^2}{c^2} - 2ac \cdot bd = 0 \\
\Rightarrow {(ad - bc)^2} = 0 \\
\Rightarrow ad - bc = 0 \\
\Rightarrow ad = bc $
So, option B is the correct option.
Note: For any quadratic equation $A{x^2} + Bx + C = 0$, there are three types of roots available which can only be determined after calculating Discriminant(D) by the formula or relation $D = {B^2} - 4AC$ . Now the three types of roots are as follows:
i). D>0 , Distinct and real roots exist and the roots are $\alpha = \dfrac{{ - B + \sqrt D }}{{2A}},\beta = \dfrac{{ - B - \sqrt D }}{{2A}}$
ii). D=0, Real and equal roots exist and the roots are $\alpha = \beta = \dfrac{{ - B}}{{2A}}$
iii). D<0, Imaginary roots exist.
For imaginary roots, there's a whole different chapter and concept known as “Complex numbers and roots”.
Complete step-by-step solution:
Given , $({a^2} + {b^2}){x^2} - 2(ac + bd)x + ({c^2} + {d^2}) = 0 \to (1)$
Step by step solution
We know for any quadratic equation $A{x^2} + Bx + C = 0$, equal roots are possible only when discriminant(D) = 0. Which can be found by the formula $D = {B^2} - 4AC$.
On comparing with equation 1, we get
$
A = ({a^2} + {b^2}) \\
B = - 2(ac + bd) \\
C = ({c^2} + {d^2}) $
Using the above concept we need to find discriminant (D), we get :
$ D = {\left[ { - 2(ac + bd)} \right]^2} - 4 \times ({a^2} + {b^2}) \times ({c^2} + {d^2}) \\
= 4({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) - 4({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) $
Here, we used the formula ${(a + b)^2} = {a^2} + {b^2} + 2ab$
Now , $D = 0$
$\Rightarrow 4({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) - 4({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) = 0 \\
\Rightarrow ({a^2}{c^2} + {b^2}{d^2} + 2ac \cdot bd) = ({a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2}) \\
\Rightarrow {a^2}{d^2} + {b^2}{c^2} - 2ac \cdot bd = 0 \\
\Rightarrow {(ad - bc)^2} = 0 \\
\Rightarrow ad - bc = 0 \\
\Rightarrow ad = bc $
So, option B is the correct option.
Note: For any quadratic equation $A{x^2} + Bx + C = 0$, there are three types of roots available which can only be determined after calculating Discriminant(D) by the formula or relation $D = {B^2} - 4AC$ . Now the three types of roots are as follows:
i). D>0 , Distinct and real roots exist and the roots are $\alpha = \dfrac{{ - B + \sqrt D }}{{2A}},\beta = \dfrac{{ - B - \sqrt D }}{{2A}}$
ii). D=0, Real and equal roots exist and the roots are $\alpha = \beta = \dfrac{{ - B}}{{2A}}$
iii). D<0, Imaginary roots exist.
For imaginary roots, there's a whole different chapter and concept known as “Complex numbers and roots”.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

